



Figure 3. Laminin structure and laminin-binding integrins (see next page for legend) (fig003jbs).

Figure 3. Laminin structure and laminin-binding integrins. (a) Laminins are $\alpha\beta\gamma$ heterotrimeric proteins. The N-terminal globular domains of the β and γ chains are important in laminin polymerisation (self-assembly); in addition, two main integrin-binding regions have been mapped to (1) the N-terminal globular domain of the α 1-chain short arm (integrins α 1 β 1 and α 2 β 1) and (2) the globular domains (G1, G2) of the α 1-chain long arm (integrins α 3 β 1, α 6 β 4 and α 7 β 1). (b) Schematic representation of the four best-characterised laminins – laminin-1, -2, -5 and -10 – and identification of their corresponding preferential integrins. Laminin-1, -2 and -10 differ only by their α chain (they all share the same β 1 and γ 1 chains). Laminin-5, which assembles as a precursor within the cell, undergoes extensive proteolytic processing of the α 3 and α 2 chains in the extracellular environment. Among the main laminin-binding integrins, α 2 β 1 can bind most laminins with intact short arms, while α 6 β 4 can recognise all of them. The integrin α 3 β 1 binds to most laminins but exhibits a much higher affinity for α 3-chain-containing laminins. Finally, integrin α 7 β 1 has so far only been demonstrated to serve as a receptor for laminin-1 and -2 (Refs 9, 12, 13, 14) (fig003jbs).