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ABBREVIATIONS

AR amyloid B-peptide

ACT a-antichymotrypsin

AD Alzheimer’s disease

ALS amyotrophic lateral sclerosis
AMOG adhesion molecule on glia

APP [B-amyloid precursor protein

BL basal laminae

BMP bone morphogenetic protein
CAM cell adhesion molecule

CMD congenital muscular dystrophy
CNS central nervous system

CO cytochrome c oxidase

CS chondroitin sulfate

dbcAMP dibutyryl cyclic adenosine mono phosphate
DCC deleted in colorectal cancer
GAG glycosaminoglycan

GFAP glial acidic fibrillary protein
GIRK G-protein coupled inwardly rectifying K channel gene
DS dermatan sulfate

ECM extracellular matrix

EGF epidermal growth factor

EHS Engelbreth-Holm-Swarm

FAD familial Alzheimer’s disease
FGF fibroblast growth factor

HC hippocampus

HS heparan sulfate

HSPG heparan sulfate proteoglycans
KS keratan sulfate

LSB- Laemmli sample buffer without -mercaptoethanol
Ng-CAM neuron-glia cell adhesion molecule
N-CAM neural cell adhesion molecules
NF neurofilament

NMDA N-methyl-D-asparate

PGs proteoglycans

PNS peripheral nervous system

PS-1 presenilin-1

PS-2 presenilin-2

RA retinoic acid

RGC retinal ganglion cell

RMP resting membrane potential

RPE retinal pigment epithelial

SAP serum amyloid P

Shh Sonic hedgehog

SN substantia nigra

TGF beta 1 transforming growth factor beta 1
tPA tissue plasminogen activator

TUJI neuron specific B-tubulin IIT isoform
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INTRODUCTION

Mechanisms of neuronal migration, neurite outgrowth, neuronal degeneration and
neuronal regeneration have been the main focus of neurobiological research for the past
hundred years. Even though several major principles have emerged, molecular
mechanisms of brain development and neuronal injuries are still largely unknown. In
recent years, investigators have concentrated on identification of molecules involved in
cell-to-cell interactions in the nervous system. Laminin-1, originally isolated from a mouse
tumor (so called EHS sarcoma), rich in basement membrane proteins, has been shown to
be one of the key molecules in nervous system development and response to trauma.
Laminin-1 promotes neurite outgrowth, guides neuronal migration, promotes neuronal

regeneration and is involved in neuronal differentiation as well as death mechanisms.

As soon as these nervous system related general functions of laminin-1 were identified,
attempts began to 1) determine specific domains of laminin-1 that mediate various
functions of this protein and 2) understand the molecular interactions that mediate the
different functions of laminin-1. Thusfar, five neurite outgrowth promoting domains have
been identified in the laminin-1 molecule: One in domain I of the yl-chain, one in the a1-
chain close to the G-domain and three in the G-domain of the a1-chain. The most studied
of these neurite outgrowth domains is a decapeptide derived from the carboxy terminal
part of the y-1-chain of laminin-1. This domain is involved in neuronal migration and axon
guidance, and has a dual neurotrophic/neurotoxic role. Synthetic peptides derived from
this domain have a neurotoxic effect when applied to neurons at high (micromolar)
concentrations whereas low (nanomolar) concentrations promote neurite outgrowth and

neuronal survival in both soluble and substrate-bound forms.

After the neurite outgrowth domain of the yl-chain of laminin-1 was identified, the AP
peptide, a major constituent of plaques in Alzheimer’s disease, was also shown to have a
concentration dependent dual neurotrophic/neurotoxic effect. This effect was thought to
result in neuronal degeneration and/or sprouting of neurites detected in the plaques. Thus,
it became relevant to investigate the distribution of laminin-1 and its yl-chain peptide in
Alzheimer’s disease. Neurological mutants with known defects in neuronal survival and
migration, such as the weaver mutant mouse, offer suitable model systems to study the

molecular mechanism of neuronal death and migration defects. We used both normal and



weaver mutant mice to elucidate the possible roles of laminin-1, its yl-chain and tissue
plasminogen activator in the migratory failure of the homozygous weaver granule neurons,

and in death of the weaver cerebellar granule neurons.

Few attempts have been made to use laminin-1 or its neurite outgrowth promoting y1-
chain decapeptide in repair of CNS injuries. In PNS injuries, a number of different
laminin-1 grafts have been applied. In PNS, both laminin-1 and the yl-chain decapeptide
allowed neurorraphy and reduced autotomy pain caused by sciatic nerve injuries.
However, the laminin-grafts were thick and caused severe compression, if used to repair
thin nerves. Therefore, they could only be used on large nerves. We initiated trials to
develop more suitable thin materials that could be used to form the back bone of the grafts
for attachment of laminin-1 and its biologically active peptides. These grafts could then be

tested in attempts to regenerate both peripheral nerve and spinal cord injuries.

Laminin-1 has been shown to induce neuronal differentiation of both early chick neural
tube cells and retinal neuroepithelial cells. Neuronal differentiation is finalized by
cessation of cell division by the fully differentiated neurons. Molecules and mechanism
involved in neuronal differentiation are poorly understood. In recent years, the ability to
isolate and maintain neuronal precursor cells in culture has allowed molecular and
biochemical analysis of neuronal differentiation. Teratocarcinoma cells have been used as
alternative model systems in studies on early neuronal development. For example, the
mouse F9 teratocarcinoma cells have been shown to differentiate into neuron when
cultured in the presence of both retinoic acid (RA) and dibutyryl cyclic adenosine
monophosphate (dbcAMP) in low serum concentrations. However, neuronal
differentiation of the F9 cells occurs in a subclass of the cells while a large proportion of
the cells still remain undifferentiated. To enable the use of F9 cells in molecular studies on
neuronal differentiation, we subcloned the F9 cells into a homogeneous population of cells
that expressed neuronal characteristics on regular tissue culture plastics without any
inductive agents. This novel cell line will be used in further studies to investigate the

mechanisms of neuronal differentiation.



REVIEW OF LITERATURE

1. Laminin

1.1. General features of laminins

Laminins form a growing family of large secretory glycoproteins with diverse functions
and cellular distributions. The first, and best characterized laminin molecule, laminin-1,
was purified from the Engelbreth-Holm-Swarm tumor (Timpl et al 1979). This prototype
of laminin consists of three different, but related polypeptide chains, A (400 kDa), B1
(210 kDa) and B2 (200 kDa), all coded by different genes (Beck et a/ 1990; Engel et al
1993) (Figure 1). Laminin-1 is a constituent of basement membranes, and antibodies
raised against laminin-1 cross-react with laminins from various tissues and species. At
present, 14 different laminin chains have been cloned (Table 1) and shown to assemble
into 12 different heterotrimeric molecules (Table 2). Currently, there are five different a-

chains, three different B-chains and six different y-chains, including netrins 1-3. The

domain assembly of the different laminins is shown in Figure 2.

Table 1. Different chains of laminin and their respective genes in humans

Chain Gene Reference

al LAMAI1 Nissinen et al., 1991

a2 LAMA2 Vuolteenaho et al., 1994
a3A LAMA3A Ryan et al., 1994

a3B LAMA3B Ryan et al., 1994

a4 LAMA4 livanainen et al., 1995
as LAMAS Durkin et al., 1997 (partial)
B1 LAMBI Pikkarainen et al., 1987
B2 LAMB2 Wewer et al., 1994

B3 LAMB3 Gerecke et al., 1994

vl LAMCI1 Kallunki et al., 1991

y2 LAMC2 Kallunki ef al.,1992

V3 LAMC3 Koch et al., 1999

Y4 (netrin-1) LAMC4 Meyerhardt et al., 1999
Y5 (netrin-2) LAMCS van Raay et al., 1997




Table 2. Chain assembly of laminins.

Old name New name Chain Reference
assembly
EHS- laminin-1 alfBlyl Timpl et al., 1979
laminin
merosin laminin-2 a2B1yl Ehrig et al., 1990
S-laminin laminin-3 alp2yl Engvall et al., 1990
S-merosin laminin-4 a2p2yl Engvall et al., 1990
kalinin/ laminin-5 a3pB3y2 Rousselle et al., 1991
nicein/
epiligrin
K-laminin laminin-6 a3B1yl Marinkovich et al,
1992
KS-laminin laminin-7 a3p2yl Champliaud et al.,1996
laminin-8 04p1yl Miner et al., 1997
laminin-9 a4p2yl1 Miner et al., 1997
laminin-10 asB1yl Miner et al., 1997
laminin-11 as5p2yl Miner et al., 1997
laminin-12 a2pB1y3 Koch et al., 1999
netrin-1 laminin-13 v4 Serafini et al., 1994
netrin-2 laminin-14 A Serafini et al., 1994
netrin-3 laminin-15 Y6 Wang et al., 1999

1.2. Nomenclature of laminins

The new nomenclature of laminins (Burgeson et al., 1994) was established to allow the

identification of a growing number of proteins composed of different a, B and y subunits.

The first cloned chains of laminin, A, B1 and B2 chains, were re-named as a1, 31 and yl1

chains, respectively. The newly identified laminin chains, bearing homology to the first a,

B, and y chains, are then named as o, B and y 2,3,4 etc. in the chronological order of



publication. The EHS-tumor laminin is re-named as laminin-1 (a1f1yl). The laminin
containing a variant A-chain, merosin, is called laminin-2 (a2B1y1), and that containing a
variant B1 chain, s-laminin, is called laminin-3 (a132yl). S-merosin, a variant of both A-
and B-chains, is laminin-4 (02p2yl). Kalinin/nicein, a variant of all three chains is
laminin-5 (a3B3y2), k-laminin, another variant of the A chain is laminin-6 (a3p1yl), and
ks-laminin that has both variant A- and Bl-chains is laminin-7 (a3B2yl; Burgeson et al
1994).

1.3. Structure of laminin-1

Rotatory shadowing electron microscopy revealed laminin-1 as a cross-shaped molecule
with one long and three short arms (Engel et al., 1981). The primary structures of both
mouse and human laminin-1 (Pikkarainen et al., 1987; Pikkarainen ef al., 1988; Nissinen
et al., 1991; Sasaki et al., 1987; Sasaki and Yamada, 1987; Sasaki et al., 1988 ) are
consistent with the ultrastructure of the purified protein (Sasaki et al, 1988). The
polypeptide chains of laminin-1 consist of several independent domains. The o 1-chain has
nine distinct domains (Sasaki et al., 1988), the B1-chain is composed of seven different
domains (Sasaki et al., 1987), and the yl-chain has six unique domains (Sasaki and
Yamada, 1987; Figure 1). The primary structural data suggest that laminin-1 consists of
three closely related short arms, each composed of the N-terminal regions of the a1, B1 or
yl chains (domains III-VI), one long arm (domains I and II) in which all the three chains
associate into one rod like structure, and a globular G-domain present in the a1-chain only
(Figure 1). The three polypeptide chains (a1, B1, and y1) of laminin-1 are linked to each
other by disulfide bonds in domain II near the center of the laminin cross and in domain I

near the globular C-terminal part of the a1-chain (Engel 1993).

Laminin-1 contains a large number of cysteine-rich motifs in its short arms. These motifs
bear a structural homology to epidermal growth factor (EGF; Engel, 1989). The a1-chain
has three cysteine-rich motifs in domains Illa, IIIb and V (Sasaki et al., 1988). In the B1-
and y-1 chains two cysteine-rich repeats are located in domains III and V (Sasaki et al.,

1987; Sasaki and Yamada, 1987).



Figure 1. The domain structure and proteolytic fragments of laminin-1. The short arms of all the
laminin chains have the same domain organization. Each short arm has two kinds of globular
domains, VI and IV, which are separated by rod-like domains V and III. According to sequence
analysis, domain VI has a mixture of a-helix, B-sheet and random coil structures. Domain VI has
several cysteine residues. Domain IV has two unrelated structures, IV typical for most o and Yy
chains and IV specific for the B-chains. The IV domains, like the VI domains, have a mixture of a-
helix, B-sheet and random coil structures, but no cysteines to allow the formation of disulfide bonds.
The a-chain has two IV- domains, IVa and IVb. The rod-like domains V and III have cysteine-rich
repeats, that show structural similarity to the EGF-like repeats, with the exception that the laminin
repeats have eight cysteines, whereas the EGF-like repeats have only six cysteines. The cysteine
repeats of laminin are named “laminin-type cysteine-rich repeats”. The long arm is a heterotrimeric
rod-like structure composed of all three chains forming domains I and II and a globular G domain
composed of a-chain only. In the B-chain there is also an o-domain between domains I and II. The
proteolytic enzymes used for limited proteolysis of laminin to produce various proteolytic fragments
are pepsin (P), pancreatic elastase (E) trypsin and cathepsin G. The proteolytic fragments are named

according to the enzyme used for proteolysis.



Laminin-1 is a highly glycosylated protein with a carbohydrate content of approximately
13-15% (Chung et al., 1979; Arumugham et al., 1986) that accounts for up to 25-30% of
its molecular weight (Knibbs e? al., 1989). There are 74 potential N-glycosylation sites in
the laminin-1 molecule (Beck ef al., 1990). A functional role for glycosylation of laminin
has been reported in tumor cell adhesion, cell spreading, neurite outgrowth and integrin-
laminin interactions (Dennis et al, 1984; Bouzon et al., 1990; Dean et al, 1990;
Chandrasekaran et al., 1991; Chammas et al., 1991). Some of these functions have also
been reported for synthetic peptides derived from the laminin-1 sequence devoid of the
sugar chains (see Table 4 for references). Thus, it is possible that glycosylation may have

a regulatory role in multiple functions of laminin-1.

A short sequence (up to 100 to 200 amino acid residues) at the carboxy terminus of each
chain is required for the assembly of laminin-1 polypeptide chains into double- and triple-
stranded coiled-coil structures (Utani, ef al., 1994, 1995b). The (3 and y chains first form a
dimeric structure followed by a more stable trimer formation with the a chain (Peters et

al., 1985; Utani, et al., 1994, 1995b; Nomizu et al., 1996).

Thusfar, primary structures of human o 1-05 (partial), f1-33 and yl-y5 chains have been
identified (for references see Tablel). The primary structures of the al-a5, B1-B3, yl-y4
and y6 chains of the rodent laminins are sequenced (Sasaki et al., 1988; Bernier et al.,
1994, Galliano et al., 1995; Miner et al., 1997; Liu and Mayne, 1996; Miner et al., 1995;
Sasaki et al., 1987; Hunter et al., 1989a; Utani et al., 1995a; Sasaki and Yamada 1987,
Sugiyama et al., 1995; livanainen et al., 1999; Serafini et al., 1996; Wang et al., 1999).
The only laminin gene found to encode for more than a single polypeptide chain is the
laminin o3 gene (Ryan et al., 1994). The a3B-chain lacks domains V and VI (Ryan et al.,
1994). In addition to domains V and VI, the 03A- and a4-chains miss also domains IVb,
IIb and IVa (Ryan ef al., 1994; Tivanainen ef al., 1995). The 3-chain does not have a
domain IV” found in the B1- and B2 chains (Gerecke et al., 1994). The y2-and y3-chains
are devoid of the globular domain VI (Kallunki, ef al., 1992; Koch et al., 1999). The y4-6
chains (netrins 1-3) differ from the other y-chains by having only the domains VI and V in
addition to the C-terminal domain unrelated to other laminins (Meyerhardt et al., 1999;
van Raay, et al., 1997; Wang et al., 1999). It is also believed, although not verified, that
netrins are secreted from cells as a single polypeptide chain. The domain organization of

different laminin chains is presented in Fig. 2. All variants of the a-, B- and y-chains have



structural homology within domains I and II, although sequences coding for these domains
are only 20-40% conserved (Engvall and Wewer, 1996). The sequence of the domain VI is
the most highly conserved amongst the various laminin chains and amongst the same
subunits from different species (Engvall and Wewer, 1996). The sequence of the globular
IV domain is also highly conserved (Engvall and Wewer, 1996).
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Figure 2. The domain (I-IV) organization of different laminin subunits.



1.4. The biological functions of laminin

The importance of laminins in mammalian development is emphasized by the fact that
laminin-1 is the first extracellular matrix protein present in between cells of the
developing mouse embryo. This was first demonstrated at the morula stage (Leivo et al.,
1980), and more recently by using different antibodies, at the 2-cell stage (Cooper and
McQueen, 1983; Dziadek and Timpl, 1986). Expression of the specific chains of laminin
is spatially and temporarily regulated, which means that each chain is present in a
particular tissue at defined periods of time (Aumailley and Krieg, 1996). For example, the
laminins in the adult brain are largely components of basement membranes whereas in
developing brain laminins exist also in a soluble less polymerized state (Liesi, 1990;
Edgar, 1991). The differential expression of the various subunits of laminin has been
demonstrated for both developing and adult nervous tissue (Liesi, 1990; Edgar, 1991;
Hunter et al., 1992a,b: Jucker et al., 1996; Luckenbill-Edds, 1997; Raabe et al., 1997,
Powell et al., 1998; Table 5). The laminins of both Drosophila (Fessler et al. 1987) and
sea urchin (McCarthy et al. 1987) resemble mammalian laminin-1 both structurally and
functionally. Goldfish and frog central nervous system (CNS) laminins are antigenically
close enough to the mammalian laminin-1 to be recognized by antibodies against mouse
laminin-1 (Liesi 1985b). Leech laminin 31-chain shows homology to human, Drosophila,
and mouse laminin [31-chains (Luebke et al, 1995). Furthermore, both the mammalian
netrin genes and the unc-6 genes of C. elegans code for proteins that are homologues of
the yl-chain of laminin-1 (Serafini et al., 1994; Wang et al., 1999; Hedgecock et al., 1990;
Ishii et al.,, 1992). These results indicate that laminins are highly concerved molecules
throughout evolution. The high phylogenetic preservation of laminins implies that these

proteins serve in fundamental roles throughout the species.

Laminins are essential for the architecture of basement membranes by participating in
their assembly, and by maintaining the differentiated states of epithelial and endothelial
cell layers, intimately associated with the basement membranes (Yurchenco ef al., 1992;
Yang et al., 1998). Formation of a laminin-1 and type IV collagen network is considered a
major event in the supramolecular organization of basement membranes (Timpl and
Brown, 1994; Timpl, 1996). Laminin-collagen networks are thought to be stabilized by
other molecules, such as nidogen (Dziadek, 1995), heparan sulfate proteoglycans (Timpl,
1994), agrin (Denzer et al., 1995), perlecan (Iozzo et al., 1994), fibulin-1 (Sasaki et al.,
1995b), fibulin-2 (Sasaki et al., 1995a), and BM-40 (Hohenester et al., 1996), an anti-

adhesive glycoprotein involved in tissue remodeling.



The identified functions of laminins include promotion of attachment and spreading of
various cell types, such as hepatocytes (Johansson et al., 1981), fibroblasts (Couchman, et
al.,, 1983), tumor cells (Vlodavsky and Gospodarowicz, 1981; Terranova et al., 1982,
1983; Malinoff et al., 1983), and neuronal cells (Baron van Evercooren, 1982; Liesi et al.,
1984a). Laminin-1 also stimulates the growth of Schwann cells (McGarvey et al., 1984),
primary renal cortical tubular epithelial cells (Oberley and Steinert, 1983), F9 cells
(Rizzino et al., 1980), and bone-marrow-derived macrophages (Ohki and Kohashi, 1994).
Laminin-1 can stimulate DNA synthesis and growth of cells possessing receptors that are
functionally or topologically associated with the EGF receptors (Panayotou et al., 1989).
Laminin-1 also functions in promoting epithelial cell polarity (Martin and Timpl, 1987,
Klein et al., 1988), neurite outgrowth (Baron van Evercooren et al., 1982; Liesi et al.,
1984a; 1989), axon guidance (Liesi and Silver, 1988; Letourneau et al., 1988), neuronal
migration (Liesi 1985a, Liesi et al., 1995), and regeneration of both central and peripheral
nervous systems (Hopkins et al., 1985; Liesi 1985b; Madison et al., 1985, 1987; Kauppila,
1993). Laminin-1 induces the formation of capillary-like structures by endothelial cells in
vitro (Kramer et al., 1989), and influences macrophage development and function by
inducing secretion of cytokines, such as IL-6 and TNF-alpha (Armstrong and Chapes,
1994).

Laminins are involved in wound healing, and regeneration of several non-neuronal tissues.
E.g. laminin-5 expression is upregulated in skin wounds (Ryan et al., 1994). The a3-chain
(Ryan et al., 1994; Goldfinger et al., 1999) and y2-chain (Kainulainen et al., 1998) of
laminin-5 are shown to be essential for epithelial migration and wound closure. The
interaction of hepatocytes and laminin-1 has also been shown to be important in liver
regeneration, possibly in growth stimulation of hepatocytes and/or maintenance of
hepatocyte-specific functions (Kato et al, 1992; Wewer et al., 1992). During liver
regeneration, the level of the al-chain expression increases progressively from 12 hours
after partial hepatectomy to the end of the regenerative period (Giménez et al., 1995).
Expression of the B1- and yl-chains increases rapidly during the first day after resection of
the liver, and decreases gradually reaching normal levels at the end of the regenerative
period (Giménez et al., 1995). Furthermore, during the regenerative period of intestinal
epithelia, laminin B1- and yl-chains are expressed differentially indicating their role in the

healing process (Goke ef al., 1996).



In addition to the function of laminins in normal tissues, laminins and their cellular
receptors may have a significant role in tumor cell growth and metastasis (Yamamura et
al., 1993; Menard et al., 1998). Laminin-1 has been shown to promote metastatic activity
of tumor cells by stimulating their attachment and migration as well as by promoting their
degradation of extracellular matrix (Yamamura et al., 1993; Menard et al., 1998). Several
synthetic peptides derived from laminin-1 play a role in tumor cell metastasis (see Table
4). E.g. the YIGSR peptide, derived from the short arm of 1 chain of laminin-1, has been
shown to inhibit tumor cell growth and metastasis (Nomizu et al., 1993; Iwamoto et al.,
1996). Another [31-chain peptide, PDSRG, has also been shown to inhibit tumor cell
metastasis (Kleinman, et al., 1989). The RGD peptide, derived from the cell recognition
site of fibronectin inhibits tumor invasion and metastasis (Saiki et al., 1990; Fujii et al.,
1996). This RGD sequence is also identified in the o1-chain of laminin-1 (Tashiro et al.,
1991).

A number of point mutations in the various chains of laminins have been linked to human
diseases. For example, mutations in a3, 33 and y2 -chains of laminin-5 have been reported
in patients with junctional epidermolysis bullosa (McGrath et al., 1995; Aumailley and
Grieg, 1996; Aumailley and Smyth, 1998). The dy® mice with a truncated domain VI of
the 02-chain of laminin-2 lack a structurally identifiable basement membrane in their
peripheral nerves (Xu et al., 1994). In humans, mutations in domains VI and I of the
laminin-2 02-chain (laminin-2) gene have been found in patients with congenital muscular
dystrophy (CMD; Helbling-Lecler et al., 1995; Hayashi et al, 1997; Gullberg et al.,
1999). Complete absence of the 02-chain is a characteristic of some congenital muscular
dystrophies (Tomé et al., 1994; Gullberg et al., 1999). The 02-chain deficiency of CMD is
also reported to lead to extensive brain abnormalities (Sunada et al., 1995). This result
suggests that the 02-chain of laminin is important in the development of CNS. In
Drosophila, mutations of the al-chain, the only O-chain identified in this species, is
embryonically lethal (Henchcliffe et al., 1993), leading to defects in numerous tissues,
such as brain, heart, gut and somatic muscles (Yarnitzky and Volk, 1995; Garcia-Alonso et

al., 1996).



Attempts to produce knockouts for most chains of laminins have failed, which further
emphasizes their fundamental importance for embryonic development. The a2-chain null
mutant mice are characterized by growth retardation and symptoms of severe muscular
dystrophy. These animals die by the age of 5 weeks (Miyagoe et al., 1997). In the a3-
chain deficient mice the formation of hemidesmosomes is perturbed and functional
interaction between laminin-5 (a3B3y2) and integrin a6B4 is disrupted (Ryan et al.,
1999). The a3-chain deficient mice die 2-3 days after birth (Ryan et al., 1999). Mice
lacking the aS-chain of laminin have multiple developmental defects, including a failure
of closure of the anterior neural tube (Miner et al., 1998). Embryos lacking laminin a5-
chain die late in embryogenesis (Miner et al., 1998). The function of the 32-chain of the
laminin-3 has been tested in [2-chain knockout mice (Noakes et al., 1995a, b). Mice
lacking the [2-chain show aberrant synaptic differentiation of their neuromuscular
junctions and die within 4 weeks after birth (Noakes ef al., 1995a). These results suggest
that laminin-3 regulates the formation of motor nerve terminals (Noakes et al., 1995a).
The B2-chain deficient knockout mice also show impaired glomerular ultrafiltration and
kidney function (Noakes ef al., 1995b) as well as abnormal retinal development (Libby et
al., 1999). Targeted deletions of the yl-chain in mouse embryonic stem cells cause early
embryonic lethality (Smyth ef al., 1999). The yl-chain-deficient embryos lack basement
membranes and die by the embryonic day 5.5 (Smyth ez al., 1999). Netrin-1 knockout mice
exhibit defects in spinal commissural axonal projections and several forebrain
commissures and die within a few days (Serafini ez al., 1996). Mice lacking a functional
netrin-1 receptor (DCC, deleted in colorectal cancer) have similar defects in their axonal
projections as shown in netrin-1 knockout mice (Fazeli et al., 1997; Deiner and Sretavan,

1999).

1.5. Analysis of the functions of laminin-1 using proteolytic fragments and synthetic

peptides

Several studies have identified specific functional domains of laminin-1 polypeptide
chains. Initially such functional domains were identified by isolating proteolytically
cleaved and biochemically purified fragments of laminin-1 (Timpl and Martin, 1987,
Paulsson, 1992). The location and biological functions of these proteolytically cleaved

fragments are summarized in Table 3.
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Table 3. Functions of proteolytic fragments of laminin. Abbreviations C, E, P and T indicate the

proteolytic enzyme used; C, chymotrypsin; E, elastase; P, pepsin and T, trypsin. See Fig 1. for

positions of proteolytic fragments in the laminin-1 molecule.

Proteolytic Functions of the fragment Reference

fragment

P1 Cell attachment, Aumailley et al., 1987
Type IV collagen binding
Nidogen binding Paulsson et al., 1987
Mitogenic Panayotou et al., 1989

El Mitogenic Panayotou et al., 1989

E4 Inhibition of Ca? induced Schittny and Yurchenco,
aggregation of laminin 1990

Cl-4 Ca’" dependent Bruch et al., 1989
polymerization

C8-9 Not detected Bruch et al., 1989

E8 Cell attachment Aumailley et al., 1987
Promotion of neurite Edgar et al., 1984
outgrowth
Heparin binding Edgar et al., 1984

T8 Cell attachment von der Mark, et al., 1991

E3,C3 Antibodies against 25K inhibit Edgar et al., 1988
neurite outgrowth
Binding of heparin and Ott et al., 1982
heparansulfate

More accurate information on the specific functional domains of laminin-1 has been
obtained using synthetic peptides. The peptides, their functions, and their positions within
the laminin-1 molecule are listed in Table 4. Some of the identified peptides exhibit

multifunctional properties.
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Neurite outgrowth function of laminin-1 has been mapped to five different peptide

domains. One is in the domain I of the yl-chain (Liesi ef al., 1989b), another in the al-

chain just before the G-domain (Tashiro et al., 1989), and the remaining three in the

domain G of the al-chain (Skubitz ef al., 1991). Other neuronally active peptides have

been localized in the B2-chain of laminin-3 (LRE; Hunter ez al., 1989b, 1991).

Table 4. Some of the biologically active synthetic peptides of laminins and their functions.

Abbreviations for amino acids: A alanine, R arginine, N asparagine, D aspartic acid, C cysteine, Q

glutamine, E glutamic acid, G glycine, H histidine, I isoleucine, L leucine, K lysine, M methionine,

F phenylalanine, P proline, S serine, T threonine, W tryptophan, Y tyrosine, V valine.

Peptide Function Reference
all CSRARKQAAS Cell adhesion, neurite outgrowth Tashiro et al., 1989
IKVAVSADR Stimulation of metastasis, collagenase | Kanemoto ez al., 1990

production
Bone cell differentiation Vukicevic et al., 1990
Binding of 110 kDa cell surface protein Kleinman et al., 1991
Stimulation of plasminogen activation Stack et al., 1991
Signal transduction, cell growth Kubota et al., 1992
Promotion of angiogenesis and tumor | Kibbey et al., 1992
growth
Tumor growth, colony formation Yamamura et al., 1993
Binding of APP Kibbey et al., 1993
T-lymphocyte adhesion Weeks et al., 1994
Disruption of gastulation in sea urchin Hawkins et al., 1995

ol G | RGD Endothelial differentiation Grant et al., 1989

ol 111 Cell adhesion Aumailley et al., 1990
Cell adhesion, spreading, Tashiro et al., 1991

al LSNIDYILIKAS | Metastasis promotion Kuratomi et al., 1999

IVa

al RDQLMTVLAN | Metastasis promotion Kuratomi et al., 1999

IVb VT

al SINNTAVMQRL | Metastasis promotion Kuratomi et al., 1999

IVb T

al VI | RQVFQVAYIIK | Metastasis promotion Kuratomi et al., 1999

A
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al G | KQNCLSSRASF | a3f1 integrin binding Gehlsen et al., 1992
RGCVRNLRLSR
al G | SINNNR Alveolar formation, cell adhesion Matter and Laurie,
1994
Cell adhesion Chen et al., 1997b
al G | KATPMLKMRT | Cell adhesion, heparin binding, neurite | Skubitz et al., 1991
SFHGCIK, outgrowth
al G | KEGYKVRDLNI | Cell adhesion, heparin binding, neurite | Skubitz et al., 1991
TLEFRTTSK outgrowth
Binding of a3f31 integrin Pattaramalai et al.,
1996
al G | KNLEISRSTFDL | Cell adhesion, neurite outgrowth Skubitz et al., 1991
LRNSYGRK
al G | DGKWHTVKTE | Cell adhesion, neurite outgrowth Skubitz et al., 1991
YIKRKAF
ol G | RKRLQVQLSI Neurite outgrowth Richard et al., 1996
RT Metastasis promotion Kim et al.,1998
Inhibition of branching epithelial Kadoya et al., 1998
morphogenesis
Stimulation of matrix metalloproteinase | Weeks et al., 1998
secretion
a2 G | KNRLTIELEVR | Neurite outgrowth Richard et al., 1996
T
B11I | YIGSR Cell adhesion, chemotaxis, binding to 67 | Grafetal., 1987
kDa receptor, neuronal attachment
Inhibition of metastasis Iwamoto et al., 1987
Nakai et al., 1992
Yamamoto et al., 1994
Bone cell differentiation Vukicevic et al., 1990
Endothelial differentiation Grant et al., 1989
Seroli cell morphogenesis Hadley et al., 1990
Inhibition of angiogenesis and tumor | Sakamoto et al., 1991
growth
Disruption of gastrulation in sea urchin Hawkins et al., 1995
B11II | PDSRG Cell adhesion, inhibition of metastasis Kleinman et al., 1989
B11I | YGYYGDALR 02p1 integrin binding Underwood et al., 1995
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B11V | RYVVLPRPVCF | Heparin binding, cell adhesion Charonis ef al., 1988
EKGMNYTVR
B1 VI | RIQNLLKITNLR | Heparin binding Kouzi-Koliakos et al.,
IKFVK 1989
B1V | LGTIPG Binding to 67 kDa elastin receptor Mecham et al., 1989
B21 LRE Motoneuron stop signal, inhibition of | Hunter et al,
neurite outgrowth 1989b,1991
Promotion of motor axon growth Brandenberger et al,
1996
yl 1 RNIAEINKDI Neurite outgrowth, neurotrophic effect, | Liesi e al., 1989

neurotoxic effect

Neuronal migration

Nuclear translocation

Required for di/trimerization of laminin
Axonal differentiation

Axon guidance

Modulation of electrical activity of neurons

Liesi et al., 1995, 1996
Liesi et al., 1995
Utani et al., 1994
Matsuzawa et al., 1996
Matsuzawa et al., 1998
Hager, et al., 1998

1.6. Molecular interactions of laminin-1

Laminin-1 has the ability to self-associate into polymers by aggregation of the amino-
terminal globular domains VI (Yurchenco et al., 1992; Yurchenco and Cheng, 1993). This
calcium to

self-association requires induce the required conformational change

(Yurchenco and Cheng, 1993).

Various molecules interact with laminin-1 either directly or indirectly and can therefore
modulate its biological effects. Nidogen-1 (entactin) binds to the fourth EGF-like repeat of
the domain III in the yl-chain (Mayer et al., 1993) increasing hepatocyte adhesion and
spreading (Levavasseur et al., 1994). Nidogen-2 binds with lower affinity to the same
binding site as nidogen-1 (Kohfeldt et al., 1998). A basement membrane-associated
glycoprotein, fibulin, binds close or directly to the G-domain of laminin-1 (Pan et al.,
1993). Thrombospondin binds laminin-1 directly (Frazier, 1987), as does heparansulfate

proteoglycan that binds to the long arm of laminin-1 (Laurie et al., 1986). Agrin, a large
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multidomain heparansulfate proteoglycan, attaches to the central region of the three-
stranded, coiled-coil oligomerization domain in the long arm of laminin-1 (Denzer et al.,
1998). Heparin has several binding sites in the laminin-1 molecule, with the most
important one being in the G-domain of laminin-1 (Ott et al., 1982; Laurie et al., 1986). In
addition, the a-chain of laminin-1 has a heparin-binding site in domain VI (Colognato-
Pyke et al., 1995). Electron microscopy has revealed two additional heparin-binding sites
in the globular domains IV and VI of B1-chain (Charonis et al., 1988 for domain IV;
Kouzi-Koliakos et al., 1989 for domain VI). Also in the long arm of laminin-1 an
additional heparin binding site is present in domain II close to the region where the al,
1, and yI chains intersect (Skubitz et al., 1988). Type IV collagen has been found to bind
laminin-1 either directly to the long arm (Charonis et al., 1986) or indirectly via nidogen-1
(Fox et al., 1991) to domain III of the yl-chain (Mayer et al., 1993). Type VII collagen
binds directly to the B3 chain of laminin-5 using its non-collagenous, globular domain
(Chen et al., 1999). Although fibronectin does not bind directly to laminin-1 it can interact
with laminin-1, because both laminin-1 and fibronectin bind heparin (Hayashi et al., 1980;
Ott et al., 1982; Timpl, 1989). An extracellular matrix molecule tenascin-C does not bind
directly to laminin-1 (Lightner and Erickson, 1990). However, indirect binding of
tenascin-C to laminin-1 or laminin-2 may occur via agrin. Agrin binds directly tenascin-C,

laminin-1, and laminin-2 (Cotman et al., 1999).

Apolipoprotein E binds laminin-1 directly (Huang ef al. 1995). It increases neuronal
adhesion to laminin-1 and alters neurite morphology (Huang et al. 1995). The amyloid
precusor protein (APP) has also been shown to bind laminin (Narindrasorasak et al.,
1992). APP has been suggested to be a laminin receptor, and it has been found to bind to
the IKVAV-sequence in the carboxyl terminus of the a1-chain of laminin-1 (Kibbey et al.,
1993). Serum amyloid P (SAP), a component of all amyloid plaques (Pepys et al., 1994)
and a normal component of a number of basement membranes (Dyck et al., 1980; Al
Mutlag et al, 1993), binds to laminin-1 (Zahedi, 1997). Chicken neuronal-glial cell
adhesion molecule (Ng-CAM) also binds to the short arms of laminin-1 (Grumet et al.,
1993). The mammalian homologue of Ng-CAM, the L1-antigen, also binds to the G2
domain of laminin-1 (Hall ef al., 1997a). However, laminin binding of the L1-molecule
take place via sulfated HNK-1 carbohydrate epitopes (Hall ef al., 1997a). Some sulfated
glycolipids also bind laminin-1 (Roberts ef al., 1985; Kobayashi ef al., 1994; Hillery et al.,
1996; Hall et al., 1997b). Lectins, plant proteins that have high affinity for specific sugar
residues of laminin-1 (Woo et al., 1990; Ozeki, et al., 1995; Saarela et al., 1996), and
calreticulin, a molecular chaperone with lectin like properties (McDonnell et al., 1996),

are also known to bind to laminin-1 carbohydrates.
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Several receptors that mediate interactions of various domains of laminins with cells have
been identified. Generally the laminin receptors are divided into two categories, the non-
integrin-type and the integrin-type cell surface receptors (Hemler, 1990; Mecham, 1991;
Liesi, 1991; Timpl and Brown, 1994). The first non-integrin type laminin receptor
identified is the 67 kDa laminin receptor isolated from melanoma cells (Rao et al., 1983).
Later this receptor was identified in several other cell types, including primary neuronal
cells (Douville et al., 1988). Another non-integrin type receptor, the 110 kDa receptor
(Kleinman et al., 1991), is localized in brains of embryonic and postnatal mice
(Luckenbill-Edds et al., 1995). This receptor has been proposed to be the amyloid
precursor protein (APP) also binding to the IKVAV sequence of the o 1-chain of laminin-1
(Kibbey et al., 1993). Dystroglycan-a is a non-integrin laminin receptor that binds
laminin-1, laminin-2, and laminin-4 (Hemler, 1999). Binding of the laminin-dystroglycan-
o complex to the cell surface is mediated by attachment of dystroglycan-o to
dystroglycan-3 that is a transmembrane protein (Hemler, 1999). In laminin-1, the binding
site of dystroglycan-a is in the major heparin binding domain in the E3 fragment (Gee et
al., 1993). Cranin, a brain isoform of dystroglycan-a, (Smalheiser and Kim, 1995) binds to
the laminin E3 fragment in the long arm of the ol-chain (Smalheiser, 1993) and is
involved in neurite outgrowth (Smalheiser and Schwartz, 1987). At least seven integrins
(04By, 02B1, 03B, A6By, AePa, 07B, and af;) are known to bind laminins, and the integrins
o131, 2B, 6By, 06Ba, a7B;, and 0P, bind specifically laminin-1 (Hemler, 1991; Timpl and
Brown, 1994; Forsberg et al., 1994; McKerracher et al., 1996).

1.7. Laminins in the nervous system

One of the best characterized functions of laminin-1 is its involvement in neuronal
development (Sanes, 1989; Liesi 1990; Luckenbill-Edds, 1997). Laminin-1 promotes
neurite outgrowth, neuronal migration, and nerve regeneration (Sanes, 1987; Liesi 1990;
Luckenbill-Edds, 1997). Laminin-1 also plays a role in neuronal differentiation (Heaton
and Swanson, 1988; Frade et al., 1996). The roles of laminins in the nervous system are
discussed in sections 2.1.1., 2.2.2.a, 2.3.1., 2.4.1.3. and 2.5.4.1. Knockout studies further
demonstrate the significance of laminins in the nervous system development (see section
1.4.).
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In adult mammalian brain, antibodies against native laminin-1 demonstrate this protein
mostly in basement membranes, whereas in those CNS areas and systems that support
axon growth and neuronal regeneration laminin-1 is detected in astrocytes (Liesi, 1985a).
In the developing brain, laminin-1 is expressed along the routes of the migratory neurons
and pioneer axons (Liesi, 1985a,b; Cohen et al., 1987; Liesi and Silver, 1988; Letourneau
et al., 1988). Transient expression of laminin-1 is induced in reactive astrocytes of the
adult injured rat brain (Liesi et al., 1984). The hypothesis that induction of laminin-1 in
the injured aduld CNS supports regeneration comes from the fact that astrocytes of the
adult rat olfactory bulb, the only regenerative area in adult mammalian brain, express
laminin continuously (Liesi, 1985b). Furthermore Schwann cells of the adult peripheral
nervous system (PNS) (Cornbrooks et al., 1983) and astrocytes of the adult CNS of the
lower vertebrates that can regenerate their injured nerves (Liesi, 1985b; Hopkins et al.,

1985) produce laminin-1.

Laminin-2 has been localized in retinal ganglion cells and along the optic pathway in
chicks (Morissette and Carbonetto, 1995). Laminin-2 is also expressed in other parts of the
CNS, e.g. in the dendritic spines of the adult mammalian hippocampus (Tian et al., 1997),
in neuronal fibers and structures of the limbic brain region (Hagg et al., 1997) as well as in
the developing mammalian olfactory system (Raabe ef al., 1997). In the developing mouse
cerebellum laminin-2 immunoreactivity is restricted to the Purkinje cells (Powell et al.,
1998). In the PNS laminin-2 the predominant laminin isoform present in the endoneurial
basement membranes of the peripheral nerves (Sanes et al, 1990), is produced by

Schwann cells (Leivo and Engvall, 1988).

Laminin-3 is concentrated in the basement membranes of the neuromuscular junctions
(Hunter et al., 1989a,b) but is also transiently expressed during development of the rat
neocortex (Hunter et al., 1992a). During CNS development laminin-3 is present in the pial
surface that overlies the floor plate of the spinal cord (Hunter et al., 1992a). Prenatally,
laminin-3 appears transiently in the capillary basement membranes throughout the CNS

(Hunter et al., 1992a).

In the developing human nervous system, mRNA for all five laminin a-chains has been
detected. The a-1 chain mRNA is present in the 17 wk human embryo brain in the neural

retina, olfactory bulb, cerebellum, and in the meninges whereas the a-2-mRNA is detected
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in the choroid plexus and the meninges (Vuolteenaho et al., 1994). The mRNAs for the
a3-, a4-, and 05-chains are present in the 6-12 wk human embryo brain (Liesi,
unpublished result). In 20 wk embryo brain, the 04-chain mRNA is not detected
(livanainen et al., 1995). The Bl-chain mRNA has been detected in 6-12 wk human
embryo brain (Liesi, unpublished result) and the 32-chain in the 17 wk human embryo
brain (livanainen et al., 1994). In 18-19 wk embryos the mRNA for the yl-chain and in 17
wk embryos the mRNA for the y2 have been demonstrated (Kallunki et al., 1992). The y4-
chain mRNA was found already in the 6-12 wk embryo brain (Liesi, unpublished result).
In the adult human CNS, the expression of laminin chains is more restricted. Expression of
the mRNA for yl-, y3- and y5-chains of laminins (I; Koch et al., 1999; Van et al., 1997)
has been detected. In rodents the qualitative expression of laminin mRNAs is largely
similar to that found in the human CNS. However, unlike the adult human CNS the
mRNAs for a4, a5, and [32-chains are expressed in the adult mouse (for reference see
Table 5b). Listing of expression of mRNAs for laminins in the human and rodent CNS is

shown in Table 5.

Table 5a. Expression of mRNAs for different chains of laminins in the human CNS.

Laminin mRNA expression
chains
al + embryo 17 wk Vuolteenaho et al., 1994
- adult I
a2 + embryo 17 wk Vuolteenaho et al., 1994
a3 + embryo 6-12 wk Liesi, unpublished
a4 + embryo 6-12 wk Liesi, unpublished
- embryo 20 wk livanainen et al., 1995;
- adult livanainen et al., 1995
as + embryo 6-12 wk Liesi, unpublished
- adult Durkin et al., 1997,
B1 + embryo 6-12 wk Liesi, unpublished
+ adult I
B2 + embryo 17 wk livanainen et al., 1994
B3 - embryo 6-12 wk Liesi, unpublished
yl + embryo 18-19 wk Kallunki et al., 1992
+ adult I
y2 + embryo 17 wk Kallunki et al., 1992
V3 - embryo Koch et al., 1999
Y3 +/- adult Koch et al., 1999
¥4 (netrin-1) + embryo 6-12 wk Liesi, unpublished
Y5 (netrin-2) + adult Van Raay et al., 1997
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Table 5b. Expression of mRNAs for different chains of laminins in the rodent CNS.

Laminin mRNA expression
chains
al + embryo 15.5d Miner et al., 1997
- adult Miner et al., 1997
a2 - nb* Bernier et al., 1994
- adult Miner et al., 1997
a3 + embryo 13-17 d Galliano et al., 1995
- adult Miner et al., 1997
a4 + embryo 17.5d, adult Miner et al., 1997
as + embryo 17,5d adult Miner et al., 1995
B1 + embryo, nb, adult Sarthy and Fy, 1996
32 + nb*, adult Libby et al., 1997
B3 - embryo 14 d, nb* Utani ef al., 1995a
yl + embryo 14 d Sugiyama et al., 1995
y2 + embryo 14d Sugiyama et al., 1995
Y3 + adult livanainen et al., 1999
v4 (netrin-1) + embryo 10,5-11,5 Serafini et al., 1996
+ embryo 11,5-14,5d Wang et al., 1999

Y6 (netrin-3)

*nb, newborn

Schwann cells of the PNS (Davis et al., 1985) and astrocytes of the CNS (Liesi and

Risteli, 1989) produce a variant form of laminin with the conventional a1-chain missing.

Recently, human glial laminin has been shown to contain a novel B-chain together with a

regular yl-chain and a shorter O-chain, possibly related to a3B-, 04-, and 05-chains

(LeMosy et al., 1996). Glial expression of laminin-1 is shown to correlate with neuronal

migration in all areas of the central nervous system investigated (Liesi 1985a). In the

developing optic nerve axons are in contact with punctate extracellular deposits of laminin

(Cohen et al., 1987; Liesi and Silver, 1988; Letourneau et al., 1988; Liesi and Risteli,

1989). The fine punctate deposits of laminin-1 localized in association with growing axons

are composed of B1- and yl-chains of laminin, whereas the 01 immunoreactivity is present

in the basement membranes (Liesi and Risteli, 1989).
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2. Nervous system development, degeneration and regeneration

In recent years a large number of molecules, involved in nervous system development,
degeneration, and regeneration have been identified. The functions of these molecules,
including laminins, are only partially understood and many questions remain to be
answered concerning the mechanisms that allow these molecules to orchestrate the

behavior of neuronal cells.

2.1. Neuronal differentiation

The differentiated cell types of the vertebrate nervous system arise from the neurogenic
epithelium (neuroectoderm) of the neural plate. In recent years major advances have been
made in understanding the inductive signals of neurogenesis during early embryonic
development. Studies on dissociated ectodermal cells during the gastrula stage showed that
these cells reaggregate after long dissociation and express neuronal markers (Godsave and
Slack, 1989; Sato and Sargent, 1989). This suggested that neuronal induction may occur
without any inductive signals from the dorsal mesoderm. The results indeed imply that
embryonic cells would become nerve cells if they do not get any other inductive signals.
Thus, the early neuronal differentiation is under a negative control. One of the molecules
that inhibit neurogenesis is the bone morphogenetic protein (BMP) 4 (Wilson and
Hemmati-Brivanlou, 1995). Several results indicate that the ectoderm responds to BMP-
activation in a dose-dependent manner: The neural fate associates with the lowest BMP
activity, the epidermal fate to the highest, and the neural crest to the intermediate level
(Chitnis, 1999). The inhibitory effect of BMP is inactivated by neural inducers such as
noggin, follistatin, and chordin (Sasai et al., 1995). All these molecules are secreted by the
Spemann organizer (Smith and Harland, 1992; Hemmati-Brivanlou et al., 1995; Sasai et
al., 1994). These molecules may bind to BMP and block the activation of BMP receptors
(Piccolo et al., 1996; Zimmerman et al., 1996). This suppresses BMP signaling and leads
to activation of a number of genes that promote neuronal fate in the dorsal ectoderm

(Sasai, 1998).

The specificity of neuroectodermal cells depends on the position they initially occupy in
the neural plate. The dorsoventral development of the neural tube is mediated by two

different signaling systems (Tanabe and Jessell, 1996). The dorsal specification is
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mediated by BMPs that are initially expressed by epidermal ectoderm and later by the roof
plate (Tanabe and Jessell, 1996). BMP signaling induces the faiths of several sensory
interneurons in the dorsal spinal cord. Recently genetic ablation studies have shown that
the roof plate is essential for specification of certain dorsal interneurons (Lee ef al., 2000).
The ventral specification of the neural tube is mediated by Sonic hedgehog (Shh; Tanabe
and Jessell, 1996). Initially, Shh is expressed by the notochord, inducing the formation of
the floor plate, where it also will be expressed. The expression pattern of Shh is closely
linked to the development and differentiation of the entire ventral neural tube (Marti ef al.,
1995). Shh expressed by the notochord defines the differentiation of motor neurons and
ventral interneurons (Ericson ef al., 1996). Shh-deficient mice show perturbed ventral
pattering of the CNS (Chiang et al., 1996). Shh prevents the dorsalization of the ventral
neuronal tube by antagonizing the effect of BMPs (Liem et al., 1995).

During closure of the neural tube the cells in the anterior part of the neural tube begin to
form the primitive forebrain, midbrain, and hindbrain. Posteriorly, the neural tube forms
spinal cord. Shortly after closure of the neural tube the neuroepithelial cells proliferate
rapidly. During this proliferative phase the cells can either remain as undifferentiated
neuronal stem cells or they may differentiate into neurons and glial cells. The mechanisms
controlling the undifferentiated and differentiated state of neurons is not fully understood.
The cell surface protein Notch and its ligand Delta-1 have been shown to participate in the
regulation of the choice between the undifferentiated and differentiated states of neurons
(Henrique et al., 1997). In different parts of the CNS different sets of homeotic genes have
been found to determine the direction of cellular development. E.g. the development of the
midbrain and cerebellum depends on an organizing center at the midbrain-hindbrain
junction known as isthmus (Marin and Puelles, 1994). In the isthmus region several
important secreted and regulatory genes are expressed, such as Wnt-1 (McMahon and
Bradley, 1990) and Enl (Wurst et al., 1994; Danielian and McMahon, 1996). Knockout
experiments on these genes eliminate cerebellum either totally or to a large extent
(McMahon and Bradley, 1990; Wurst et al., 1994; Danielian and McMahon, 1996). Enl
may further be regulated by a secreted glycoprotein WNT (McMahon et al., 1992).
Expression of WNT protein is regulated by the Pax-gene family (Song et al., 1996).
Inactivation of Pax2 leads into a massive loss of cerebellum and posterior midbrain (Favor
et al., 1996). Recent studies indicate that Pax6 is expressed in the rthombic lip and in the

presumptive early granule cell moving away from the rhombic lip (Engelkamp et al.,
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1999). Mathl, the mouse homologue of the Drosophila gene afonal encoding for a basic
helix-loop-helix transcription factor, has been shown to be essential for the genesis of
cerebellar granule neurons in vivo (Ben-Arie et al., 1997). Segmentation plays a prominent
role in the hindbrain (Lumsden and Krumlauf, 1996). The hindbrain neural tube is divided
in segmental units called rhombomeres. Expression of Hox genes patterns an ordered set
of domains along the neuraxis (Lumsden and Krumlauf, 1996). Thus, it is possible that the
identity of individual rhombomeres could be defined by a cooperative action of the Hox
proteins. Retinoic acid (RA) regulates the expression of Hox genes and overexpression of
RA has been shown to result in an anterior shift of the Hox gene expression (Lumsden and

Krumlauf, 1996).

2.1.1. Laminin in neuronal differentiation

The involvement of laminin-1 in neuronal differentiation became evident in studies on
frog retinal pigment epithelial (RPE) cells (Reh 1987). RPE cells, grown on laminin-1,
transdifferentiate into neurons instead of the lens cells (Reh 1987). Laminin-1 is also
known to influence neuronal differentiation of the early chicken neural tube (Heston and
Swanson 1988). The E8 fragment of laminin-1 stimulates proliferation and differentiation
of neuroepithelial cells into neurons in vitro (Drago et al., 1991; Frade et al., 1996).
Integrin o136 receptors have been found to be down-regulated when retinal ganglion cells
progressively differentiate (de Curtis et al, 1991; Cohen and Johnson, 1991).
Transformation of chromaffin cells into sympathetic neurons in response to basic
fibroblast growth factor occurs if laminin-1 is used as culture substratum (Chu and
Tolkovsky, 1994). The IKVAV domain of the al-chain of laminin-1 interacts with the
plasmalemmal protein LBP110 (Chalazonitis et al., 1997). This protein is acquired by the
neural crest-derived precursors of the enteric neurons after they colonize the gut and,
therefore, promote the development of the enteric neurons (Chalazonitis et al., 1997).
Laminin B2-chain may also be involved in the differentiation of rod photoreceptors
(Hunter et al., 1992b) and may control their developmental choices between the rod

photoreceptor and bipolar cell fates (Hunter and Brunken, 1997).
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2.1.2. Neuronal cell lines
Different kinds of neuronal cell lines have been developed to study the molecular

mechanisms of neuronal differentiation. These cell lines may be divided in different
groups depending of the origin. Teratocarcinoma cells, derived from tumors of the fetal
germ cells, e.g. teratomas, provide cell lines in which the entire differentiation process
from pluripotent cells to terminally differentiated cells can be followed (Martin, 1980).

See also section 2.1.3

Human neuroblastoma cell lines are derived from childhood solid tumors containing of
primitive cells of precursors of the autonomic nervous system. These neuroblastoma cell
lines have been shown to undergo spontaneous and chemically induced differentiation into
cells resembling those of the mature nervous system. Neuroblastoma cell lines have been
used to study the mechanism of neuronal differentiation (Abemayor and Sidell, 1989;
Péhlman et al., 1995; Maggi et al., 1998) and degeneration (Omar and Pappola 1993; Neill
et al., 1994). In addition to human neuroblastomas mouse neuroblastoma cell lines have

been chemically induced from both central and peripheral neurons (Liesi, 1984).

Immortalized neural cell lines can be produced using somatic cell fusion to neuroblastoma
cell lines, isoforms of transforming agents such as myc and neu or by using SV40 large
tumor antigen (Martinez-Serrano and Bjorklund, 1997). These gene transfer techniques
have allowed introduction of growth factors, neuropeptides, neurotransmitters as well as
biosynthetic and metabolic enzymes into the neural progenitor cells (Gokhan et al., 1998).
Using this technique several conditionally immortalized neural stem/progenitor cell lines
have been established from embryonic hippocampus, cerebellum (Gokhan et al., 1998),
and spinal cord (Li ef al., 2000). The conditionally immortalized neural cell lines can be
transplanted back into the mammalian brain and may represent an experimental resource
for characterization of molecular mechanism involved in CNS development, plasticity, and
regeneration (Gokhan er al., 1998). Undifferentiated stem cells of the adult brain have
been shown to differentiate into neurons, astrocytes, and oligodendrocytes in vitro
(Reynolds and Weiss, 1992, 1996; Palmer ef al., 1997; Johansson et al., 1999; Chiasson et
al., 1999). The neural stem cells are most abundant in the walls of the lateral ventricles
(Weiss et al., 1996) and in the hippocampus (Palmer et al., 1997). Stem cells that associate
with the ventricular systems have been shown to originate either from the ependyma

(Johansson et al., 1999) or the subependyma (Chiasson et al., 1999).
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2.1.3. Teratocarcinoma cells as a model system for neuronal differentiation

Teratocarcinoma cells have been used as a model system for early embryonic development
(Strickland and Mahdavi 1978; Martin 1980,). These pluripotent cells are capable of
differentiating into various organs and cell types. The inductive signals of this
differentiation have been studied as putative morphogens, e.g. factors that may control cell
determination during early embryonic development (Martin and Evans 1975; Sell and
Pierce, 1994; Andrews, 1998). Depending on cell density laminin-1 induces differentiation
of teratocarcinoma cells either into neurons or multinucleated striated muscle cells

(Darmon, 1982; Sweeney ef al., 1990; Kim et al., 1995).

Retinoic acid (RA) alone or in combination with dibutyryl cyclic AMP (dbcAMP) has
been used to differentiate teratocarcinoma cells into visceral or partietal endoderm
(Strickland and Mahdavi 1978, Sporn and Roberts 1983). DbcAMP alone does not
provoke differentiation of the F9 cells but the cells must first be exposed to RA in order to
be permissive to the effects of dbcAMP (Darrow ef al., 1990). Serum deprivation together
with RA and dbcAMP has been shown to induce neuronal differentiation of various
teratocarcinoma cell lines (Pleiffer et al., 1981, McBurney et al., 1982, Levine and Flynn

1986, Kubo 1989), including the F9-cells (Kuff and Fewell, 1980, Liesi et al., 1983).

2.2. Neuronal migration

2.2.1. Current models of neuronal migration

The classical viewpoint on neuronal migration is that migration of embryonic and early
postnatal neurons occurs via physical guidance of the radially oriented glial cell processes
(Jacobson, 1991). According to this point of view all radial migration of neurons proceeds
along the radial glial cells while all horizontal neuronal migration proceeds along other
neuronal fibers (Rakic, 1990). Thus, the glial cells are considered to have all the molecular
and physical guidance cues that the migratory neurons need (Sidman and Rakic 1973;

Rakic, 1990) and to provide all the directionality required for neuronal movement.
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In the past years an alternative opinion, the nuclear translocation model of neuronal
migration, has emerged. It implies that neurons move without the glial guidance by nuclear
translocation inside their preformed processes (Morest, 1970; Domesick and Morest,
1977; Nakatsuji and Nagata, 1989; Book and Morest, 1990; Liesi, 1992). Nuclear
translocation of neuroblasts has been described as early as in 1935 in the young cerebral
cortex (Sauer, 1935), but it was then thought to relate to the division of neuroblasts rather
than to their migration. The fact that CNS neurons migrate via nuclear translocation inside
a preformed processes was first predicted by Morest based on his careful studies on the
Golgi-stained sections of different brain regions (Morest, 1970). However, the lack of
direct visual evidence prevented the acceptance of the nuclear translocation model,
although experiments using intraperitoneal injections of specific gliotoxins indicated that
cerebellar granule neurons can migrate in the absence of the glial cells (Sotelo and Rio,

1980).

In recent time lapse video microscopy studies, the cerebellar granular neurons were seen
to migrate without glial cells in association with other neurites (Nakatsuji and Nagata,
1989). When cerebellar granule neurons were cultured on a laminin substratum, the
granule neurons migrated via neurite extension and contact formation followed by nuclear
translocation inside preformed neuronal processes without the presence of the glia (Liesi,
1992). Novel developments of infrared video microscopy allowed the visualization of
neuronal migration in slices of living postnatal cerebellum (Hager et al., 1995). Using this
modern methodology, the nuclear-translocation-type neuronal migration was found to be
the primary form of neuronal movement in postnatal cerebellum (Hager ef al., 1995; Liesi
et al., 1995). The nuclear translocation mode of neuronal migration was found to involve
two distinct phases. During the first, the neurite extension phase, granule neurons extend
neurites towards the presumptive internal granule cell layer. Interestingly, the stop signal
for granule neuronal migration is suggested to be their contact with mossy fibers (Baird et
al., 1992), their final synaptic counterparts. Thus, it is possible that the neurite-extension
phase continues until the granule neurons make contact with their appropriate targets.
After the contact is formed the second phase, the nuclear translocation phase, follows. The
nuclei then translocate inside their preformed neurites into the internal granule cell layer.
In the cerebral cortex a glia-independent form of neuronal migration has also been

detected using Dil-labeling of living migratory neurons (O’Rourke et al., 1992, 1995).
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Confocal studies indicate that migratory cortical neurons first proceeded vertically (as if
they followed the radial glial fibers), but then turned 90 degrees and moved horizontally
(O’Rourke et al., 1992, 1995). The horizontal mode of migration cannot be guided by the

radial glia.

2.2.2. Molecules involved in neuronal migration

Molecules involved in neuronal migration belong to two primary categories: The ECM
proteins and the cell adhesion molecules (CAMs). Many molecules affecting axon
guidance also seem to have an effect on neuronal migration. According to the neuronal
translocation model, neuronal migration and axon guidance are closely related events.
Therefore it is feasible that the same molecules may be involved in both neuronal

migration and axon guidance.

2.2.2.a ECM molecules

A number of ECM proteins have been shown to play a role in neuronal migration (Liesi,
1990; Sanes, 1990). In developing brain, laminin-1 is localized along the routes of
migratory neurons (Liesi, 1985a). In chick CNS Bl-integrin antisense RNA inhibited
neuronal migration in vivo (Galileo ef al., 1992). These results provide functional evidence
for the role of laminin in neuronal migration, because [31-integrin-type laminin receptors
have been shown to mediate the effects of laminin on both central and peripheral neurons
in culture (Tomaselli et al., 1986; Hall ef al., 1987; Cohen et al., 1986, 1987). Antibodies
against the native EHS-tumor laminin-1 fail to inhibit neuronal migration on a laminin-1
substratum (Linder et al., 1986), although recent experiments indicate that antibodies
against the neurite outgrowth promoting domain of the yl chain of laminin-1 inhibit
neuronal migration both in vitro (Liesi et al., 1992) and in vivo (Liesi et al., 1995). The
non-functional antibodies against native laminin-1 (used by Linder ef al., 1986) recognize
the P1- fragment in the N-terminus of laminin-1 (Ott et al., 1982), while the neurite
outgrowth domains of laminin-1 localize in the C-terminal parts of this molecule (Martin
and Timpl, 1987; Liesi et al., 1989; Paulsson, 1992). Thus, antibodies (I) against the C-
terminal neurite outgrowth promoting domain inhibit neuronal migration in cerebellar
microcultures (Liesi er al., 1992) and in living slices of postnatal rat cerebellum

microcultures (Liesi et al., 1995).
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Laminin-2 promotes olfactory neuronal migration (Calof and Lander, 1991), whereas
laminin-3 inhibits neuronal migration by a gated mechanism, e.g. neurons can migrate on
laminin-3 but do not migrate from laminin-3-free substratum towards laminin-3
substratum (Porter and Sanes, 1995). Laminin-3 is transiently expressed along the routes

of the migratory cortical neurons (Hunter et al., 1992a).

Netrins, the vertebrate homologues of the UNC-6 gene and homologues of the yl-chain of
laminin-1, are also involved in neuronal migration (Hedgecock et al., 1990; Kennedy et
al., 1994). In the reeler mutant mice the orderly inside-out deposition of neocortical cells
is disturbed (Frotscher, 1997). The affected gene in the reeler mutation has been found to
code for reelin, a large extracellular matrix protein that is secreted by the Cajal-Retzius
cells (D’Arcangelo et al., 1995; Frotscher, 1997). Antibodies against thrombospondin-1
inhibit granule neuronal migration by a dose-dependent manner (O’Shea, 1990). Tenascin-
C either promotes or inhibits neuronal migration (Faissner and Kruse, 1990; Husmann et
al., 1992, 1995; Faissner, 1997). Antibodies against tenascin-C inhibit cerebellar neuronal
migration (Chuong, 1990). A chondroitin sulfate proteoglycan (CSPG), astrochondrin, has
been shown to be involved in cerebellar neuronal migration (Streit et al., 1993). Apart
from stimulation of neuronal migration (Streit et al., 1993; Garwood et al., 1999) CSPGs
have also been shown to act as molecular barriers of neuronal migration (Grumet et al.,
1996; Landolt et al., 1995) and their inhibitory effect can be modulated by cell adhesion
molecules (Grumet et al., 1996; Dou and Levine, 1995). The involvement of fibronectin in
CNS neuronal migration has been proposed by studies in which fibronectin has been
localized along the migratory cell pathway of embryonal cerebellar neurons (Schachner et
al., 1978; Hatten et al., 1982). These studies have been confronted by opposite results
indicating that fibronectin is not involved in cerebellum neuronal migration (Hynes et al.,
1986). Neuronal migration of neural crest cells has been blocked by antibodies against
fibronectin (Rovasio et al., 1983). The CSAT antibodies which recognize a cell surface
receptor for both fibronectin and laminin (Bronner-Fraser, 1986) or peptides containing
the cell-binding site of fibronectin (Boucaut et al., 1984) also interfere with neural crest

cells migration.
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2.2.2.b Cell Adhesion molecules

Several cell adhesion molecules are involved in neuronal migration. Neural cell adhesion
molecule (N-CAM), Ng-CAM, and L1 antigen (Chuong, 1990; Matsushita et al., 1997;
Ronn et al., 1998) as well as astrotactin (Hatten and Mason, 1990; Zheng et al., 1996) are
all present in the cerebellum during the time of neural migration. Antibodies against all
these adhesion molecules inhibit neuronal migration (Chuong, 1990; Hatten and Mason,
1990). Inactivation of N-CAM by genetic deletion have been shown to disturb the
migration of several types of neurons (Cremer et al., 1994; Ono et al., 1994). The
adhesion molecule on glia (AMOG), the B subunit of the Na/K-APTase, is expressed in
the cerebellum during the time of neuronal migration and neuronal migration is inhibited

by antibodies against AMOG (Antonicek et al., 1987; Gloor et al., 1990).

2.2.2.c Other mediators of neuronal migration

Ion channels also play a role in neuronal migration. Blockers of both voltage-gated N-type
calcium channels (Komuro and Rakic, 1992) and N-methyl-D-aspartate (NMDA)
receptors (Komuro and Rakic, 1993) inhibit neuronal migration of the cerebellar granule
neurons. The rate of granule neuronal migration depends on both the extracellular
concentrations of Ca>" and the Ca®" influx through the calcium channels (Komuro and
Rakic, 1992, 1993, 1996). In these experiments inhibitors of potassium and sodium
channels or L- and T-type calcium channels had no effect on neuronal migration (Komuro

and Rakic, 1992).

Proteolytic enzymes play a role in neuronal migration (Kalderon, 1982; Moonen et al.,
1982). Cultured cerebellar granule neurons secrete tissue plasminogen activator (tPA), a
serine protease (Krystosek and Seeds, 1981), and bind tPA with high affinity onto their
surfaces (Verrall and Seed, 1988). Both tPA activity and tPa mRNA levels of the postnatal
cerebellum are maximal at P7 (Friedman and Seeds, 1995), which coincides with the most
active period of granule cell migration. Inhibitors of serine proteases inhibit granule cell

migration both in vitro and in vivo (Seeds et al., 1990; Seeds et al, 1997).

In addition to the above mentioned molecules additional gene defects and mutations may
disturb the neuronal migration process (Goldowitz and Hamre, 1998). Staggerer, weaver,
and reelin mice are examples of naturally occuring mutations that affect neuronal

migration in the cerebellum (Sidman and Rakic, 1973; Goldowitz and Hamre, 1998). In
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humans lissencephaly is a neuronal migration disorder resulting in brain malformation,
epilepsy, and mental retardation (Pilz et al, 1998). Two genes associated with
lissencephaly have been identified. The gene for X-linked lissencephaly is called
doublecortin and its function is to stabilize microtubules during neuronal migration (Allan
and Walsh, 1999; Francis et al., 1999; Gleeson, 1999). Another lissencephaly associated
gene, LISI, the gene for the [ subunit of platelet activating factor acetylhydrolase, also
influences microtubule dynamics (Sapir et al., 1997). LISI knockout mice exhibit
abnormal neuronal migration ( Hirotsune et al., 1998). Neuronal migration is also
influenced by a number of external physical (e.g. ionizing radiation, heat), chemical (e.g.

toxins, various drugs, alcohol) or biological factors (e.g. some viruses) (Jacobson, 1991).

2.2.3. Neuronal migration during cerebellar development

In the adult cerebellum five types of neurons are present: Purkinje cells, granule cells,
basket cells, Golgi II cells, and stellate cells. The Purkinje cells are the only efferents of
the cerebellum whereas all other neurons are interneurons. The adult cerebellum is
composed of three cortical layers in which the basket and stellate cells are in the outmost
layer called the molecular layer. Purkinje cells occupy the central layer, the Purkinje cell
layer, and the inner cell layer, the granule cell laye,r is largely formed by the granule
neurons (Fig. 3). Impulses are conducted into the cerebellar cortex by climbing fibers and
mossy fibers. Climbing fibers synapse with the dendrites of the Purkinje cells. Mossy
fibers synapse with both dendrites of the granule cells and axons of the Golgi II cells. The
axons of the granule cells, the parallel fibers, make synaptic connections with dendrites of
the Purkinje, basket, Golgi II, and stellate cells. Stellate cells synapse with dendrites of the
Purkinje cells, and basket cells with the somas of the Purkinje cells. The Golgi II cells

synapse with the granule cell dendrites.

Cerebellar neurons originate from two separate germinal zones. The Purkinje and Golgi II
cells originate from the neuroepithelial ventricular zone of the fourth ventricle. Recently
the basket and stellate cells have also been shown to originate from the same germinal
zone as the Purkinje cells (Zhang and Goldman, 1996). The granule cells originate from
the germinal cells of the rhombic lip, the lateral most area of the presumptive floor of the
4th ventricle. These germinal cells migrate to form the external granule cell layer (EGL)

on the surface of the cerebellar plate (Jacobson, 1991; Goldowitz and Hamre, 1998).
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Figure 3. Organization of adult mammalian cerebellar neurons into the cortical layers; Mol =
molecular layer, Pur = Purkinje cell layer, Gran = granule cell layer, BC = basket cells, CF=
climbing fiber, GC = Golgi II cells, gr = granule cells, Pur= Purkinje cells, SC = stellate cells,
PF=parallel fibers.

During neuronal migration neuroblasts move from their origin of birth to their final
destinations. Migration of cerebellar neurons occurs in two phases. During the first phase
neuroblasts migrate from the ventricular germinal zone of the fourth ventricle along the
basal lamina outward to create the mantle layer of the cerebellar plate. This first migratory
phase that occurs in the mouse around E11-E13 (Miale and Sidmam, 1961) gives rise to
the Purkinje cells. The Golgi II cells originate from the same ventricular zone around E12-
E15 and migrate directly into the presumptive molecular layer (Miale and Sidmam, 1961;
Zhan and Goldman, 1996; Goldowitz and Hamre, 1998). The neuroblasts that generate
granule neurons divide in the rhombic lip at E13 to E15 and migrate over the surface of

the cerebellar plate to form the external granular cell layer (EGL). After having formed the
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external granule cell layer these precursors of granule neurons enter a proliferative phase
(Miale and Sidmam, 1961) before they enter their second phase of neuronal migration.
During this second postnatal phase the granule neurons migrate from the EGL passing the
Purkinje cells to form the internal granule cell layer of the mature cerebellum (Miale and
Sidmam, 1961; Zhan and Goldman, 1996; Goldowitz and Hamre, 1998). The migration of
granule neurons in the developing cerebellum is schematically presented in Figure 4.
Progenitors of the basket and stellate cells migrate first from the primary germinal zone to
the cerebellar white matter and divide there postnatally (Zhang and Goldman, 1996).
Finally they enter the cerebellar cortex (Zhang and Goldman, 1996).
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Figure 4. Migration of granule neurons from the external granule cell layer to the internal granule
layer. Abbreviations; EGL, external granule cell layer; Mol, molecular layer; Pur, Purkinje cell

layer; IGL, internal granule cell layer.
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2.2.4. The weaver mutant mouse as a model of neuronal migration and death

The molecular and cellular mechanisms coverning neuronal migration can be studied
using neurological mutants having defects in neuronal migration. E.g, 20 mutations that
alter the development of cerebellum have been identified (Sidman et al., 1965). The
weaver mouse is a naturally occurring, autosomally recessive mutation that has been
genetically mapped to chromosome 16 in the mouse (Reeves et al., 1989). The weaver
mice have a neuronal defect that disturbs both cerebellar and nigro-neostriatal
development (Sidman 1965, Roffler-Tarlov and Graybiel 1986). The early postmitotic
granule cells are unable to migrate or form bipolar neurites (Sotelo, 1975, Rakic and
Sidman 1973a,b,c). A schematic presentation of cell layers in both the weaver mutant and
normal mouse cerebella is shown in Fig. 5. In the weaver mouse cerebellum a large
majority of the vermal granule neurons die within the first two postnatal weeks (Rakic and
Sidman, 1973c) leaving the adult weaver cerebellum low in granule neurons (Sotelo, 1975;
Rakic and Sidman 1973c). Purkinje cells appear normal at the start of their postnatal life,
but are later misplaced and a proportion of them die during the third postnatal week of life
(Smeyne and Goldowitz, 1990; Maricich et al., 1997). Neuronal degeneration in the
substantia nigra (SN) is most abundant during the postnatal days 24-25 (Schmidt, et al.,
1982; Oo et al., 1996). In addition to the disturbed cerebellar and SN development the
weaver mice have a number of other abnormalities. Most of the homozygous weaver males
are sterile due to of a failure in spermatogenesis (Harrison and Roffler-Tarlov, 1994).
Germ cells are shown to die during the development of the testes (Harrison and Roffler-
Tarlov, 1998). Furthermore, both heterozygous and homozygous weaver mice undergo
tonic-clonic seizures (Eisenberg and Messer, 1989), which are thought to be the most
common cause of their death. Cell death in the weaver cerebellum has been suggested to
occur via apoptosis (Migheli et al., 1995; Wullner et al., 1995), whereas apoptosis is not
the mechanisms of neuronal death in the weaver SN (Oo et al., 1996). The weaver mutant
mouse is used as an animal model for studies on neuronal migration, neuronal death, and

neurodegenerative disorders, such as Parkinson’s disease.
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Figure 5. Schematic presentation of cell layers in early postnatal cerebellum of the a) normal and b)

weaver mutant mouse.

The weaver gene defect impairs neuronal migration both in vivo and in vitro (Rakic and
Sidman, 1973a-c; Trenkner et al. 1978; Willinger and Margolis, 1985). Several studies
have shown that the weaver granule neurons fail to migrate and die under normal cell
culture conditions (Trenkner et al. 1978; Willinger and Margolis, 1985). Studies using
chimeric mice indicate that the weaver defect is intrinsic to the granule neurons
(Goldowitz, 1989). This is further verified by in vitro and in vivo transplantation studies in
which the weaver granule cells can be rescued by the wild-type granule neurons (Gao and
Hatten, 1993) or their membrane extracts (Gao et al., 1992). Although the weaver gene
defect is intrinsic to the granule neurons the weaver Bergmann glial cells are also
abnormal. They project normally, but appear immature compared to the normal Bergmann
glial cells (Bignami and Dahl, 1974a,b; Sotelo and Changeux, 1974) and resemble

“reactive” astrocytes by their increased expression of both GFAP and laminin (II).

Recent reports suggest that a point mutation in a G-protein coupled inwardly rectifying K"
channel gene, GIRK2 (Lesage et al., 1994), could be the weaver gene (Patil et al.1995;
Slesinger et al., 1996). This mutation maps close to the weaver locus in chromosome 16
and is a single amino acid substitution (glysine — serine) in the pore-forming HS region of

the GIRK2 channel protein (Patil et al. 1995, Fig. 6.).
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Figure 6. Proposed weaver-mutation in the GIRK2 channel gene. The position of the mutated amino

acid (nucleotide change G - A) in HS domain is marked with a black dot.

A point mutation in the GIRK2 channel pore domain creates a G protein-insensitive, non-
selective cation channel that gates not only K but also Na"and Ca>" (Navarro ef al., 1996).
Both GIRK?2 and the related protein GIRK 1 have been localized in the granule neurons of
the external granule cell layer of the normal postnatal cerebellum during the period of
neuronal differentiation and neuronal migration (Slesinger et al., 1996). Interestingly, the
GIRK?2 channel protein was not studied in the postnatal weaver cerebellum (Slesinger et

al., 1996).

In spite of these results it is becoming increasingly clear that the GIRK2 point mutation
can not explain the weaver phenotype. The resting membrane potentials of weaver neurons
can be rescued by aprotinin (II), a L-type Ca*'-channel blocker verapamil (Liesi and
Wright, 1995), antibodies against the yl-chain of laminin-1 (Liesi and Wright, 1996), and
ethanol (Liesi, et al., 1997). Several recent experiments have shown that the GIRK2
channel is inactive in weaver neurons during the developmental stages when the neurons

are dying (Mjaatved et al., 1995; Surmeier et al., 1996). Furthermore, mice lacking the
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GIRK?2 channel gene have normal cerebella (Signorini et al., 1997). As weaver granule
neurons can be rescued by inhibiting the calcium entry into the neurons or chelating
calcium by BABTA-AM (Liesi and Wright, 1996; Liesi et al., 1997), it is possible that any
measure that reduces intracytoplasmic levels of Ca>” will be sufficient to prevent death of
the weaver neurons. In line with this view point the weaver granule cells fail to express
functional NMDA receptors (Liesi et al., 1999), which helps to reduce influx of Ca®! that

would occur via activated NMDA receptor channels.

2.3. Neurite outgrowth and axonal targeting

During the development of the nervous system pioneer axons have to find their right
targets to establish specific neuronal connections. Growth cones of growing axons
responds to different guidance cues, such as soluble chemoattractants and/or
chemorepellents as well as contact repulsion and/or attraction. Some of these guidance
cues have been identified and found to be extracellular matrix molecules and cell adhesion

molecules (Tessier-Lavigne and Goodman, 1996).

2.3.1. Laminin and other extracellular matrix molecules in neurite outgrowth
Laminin-1 is shown to promote neurite outgrowth in several in vitro (Baron-Van
Evercooren et al., 1982; Manthorpe et al., 1983; Liesi et al., 1984a, 1989; Edgar et al.,
1984; Gundersen, 1987; Lein et al., 1992; Matsuzawa et al., 1996; 1998) and in vivo
studies (Liesi et al, 1985b; Hopkins et al., 1985; Cohen et al., 1987; Letourneau, 1988;
Liesi and Silver, 1988).

Five different neurite outgrowth promoting peptides, one in the yl-chain (Liesi et al.,
1989b), and four in the al-chain (Tashiro et al., 1989; Skubitz et al., 1991), have been
identified in the laminin-1 molecule. Axonal differentiation and directional axon growth of
rat hippocampal neurons have been shown to be promoted by patterned substrates of a
decapeptide derived from the yl-chain neurite outgrowth domain of laminin-1 (Matsuzawa
et al., 1996; 1998). The neurite outgrowth promoting peptide of the yl-chain of laminin-1

modulates the electrical properties of neocortical neurons (Hager ef al., 1998).
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The first genetic evidence for the involvement of laminin in neuronal migration and axon
growth came from studies on neuronal development in C. elegans (Hedgecock e al., 1990;
Ishii et al., 1992). In this species a mutation of the Unc-6 gene affects neuronal migration
and pioneer axon growth indicating that Unc-6 takes part in these processes (Hedgecock et
al., 1990; Ishii et al., 1992). The Unc-6 gene product is homologous to the IV and V
domains of the y-1 chain of laminin-1 and to netrins, recently identified homologues of the

yl-chain of laminin-1 (Serafini et al., 1994).

In addition to the role of laminin-1 in development of the optic pathway (Liesi and Silver,
1988) laminin-2 has also been proposed to play a role in the development of the visual
system. Retinal ganglion cells (RGC) lose their ability to respond to laminin-1 during the
developmental period when axons grow into the optic tectum (Cohen et al, 1986),
whereas laminin-2 supports neurite outgrowth of chick RGC throughout their embryonic
development until the postnatal day 15 (Cohen and Johnson, 1991). Neurite outgrowth of
retinal ganglion cells (RGC) on both laminin-1 and laminin-2 is blocked by anti-31
integrin antibodies (Cohen and Johnson, 1991). Laminin-2 promotes regeneration of

sympathetic nerves in vivo (Anton et al., 1994).

Laminin-3 is a potent inhibitor of neurite outgrowth of motor neurons (Porter et al., 1995;
Porter and Sanes, 1995). The 32-chain of rat laminin-3 bears a site, LRE, that has been
shown to inhibit neurite outgrowth promoted by other extracellular matrix molecules
(Porter et al., 1995). Interestingly, the human [32-chain of laminin-3 lacks the LRE-site
(Wewer et al., 1994), which questions the importance of LRE as a general stop-signal for
growing axons. Whether the LRE domain inhibits or promotes neurite outgrowth may also
depend on the assembly of this peptide domain with other chains of laminin
(Brandenberger et al., 1996). E.g. native chick laminin-4, which contains the 2 chain,

does not inhibit but rather promotes motor axon growth (Brandenberger et al., 1996).

Several other ECM molecules may either promote or suppress neurite outgrowth (Table
6). Neurite outgrowth promoting ECM molecules include fibronectin (Akers ef al., 1981)
and trombospondin (Neugebauer et al., 1991; Arber and Caroni, 1995). Collagens I, IV
and VII have high neurite outgrowth promoting activities on cultured neurons from
embryonic mouse brain, but they are less effective on neurons from the postnatal brain

(Hirose et al., 1993). Tenascin-C (Bourdon et al., 1983) exhibits both axon growth-
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promoting and axon growth-inhibiting activities (Grierson et al., 1990; Lochter et al.,
1991; Faissner, 1997). Proteoglycans are also found to have a dual role in axon growth.
The growth promoting effects of chondroitin sulfate (CS), heparan sulfate (HS), dermatan
sulfate (DS) and keratan sulfate (KS) are dependent on the neuronal growth substratum
(Campagna et al., 1995; Dou and Levine, 1995; Snow et al., 1996). The inhibitory effects
of proteoglycans are neutralized if the relative concentration of laminin-1 is increased in

relation to the inhibitory proteoglycans (McKeon et al., 1995; Snow et al., 1996).

Table 6. Behaviour of dissociated rat central neurons on ECM-proteins. The effect of each substrate

is illustrated as a schematic drawing.

Protein Neurons Effect Stimul.  Inhibition
Laminin-1 Cerebellum 4t N.D
HC, cortex @ * o
SC, retina
Laminin-2 Retina + N.D
(Merosin) Cerebellum o
(P1-P3)
Laminin-3 SC . ° + -
(s-laminin) CcG B
y1 chain neurite Cerebellum ++ N.D
outgrowth HC, Retina . o
domain SC
Netrin-1 SC, Retina
etrin —e . o ot -
Thrombospondin Cerebellum .
Retina o— ND

Fibronectin Cerebellum + N.D
Retina ’
Tenascin-C/R HC;Retina
Cerebellum fﬁr + R

Type IV Cerbellum ./
Collagen Cortex _® (o N.D R
HSPG Cerebellum .
Retina ._ ++ -
sC R )
CSPG Cerebellum

KSPG Cerebellum

++ -

L 4
o ++ .-
.
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2.3.2. Netrins, semaphorins and ephrins in axon guidance

Netrins are soluble axon outgrowth promoting molecules, homologous to the yl chain of
laminin-1 and Unc-6 (Hedgecock et al., 1990; Ishii et al., 1992). Netrins are found to
either attract or repel different subsets of axons towards or away from the ventral midline
(Hamelin et al., 1993; Serafini et al., 1994, 1996; Colamarino and Tessier-Lavigne, 1995).
The receptors that mediate the attractive effect of netrins are DCC and neogenin (for ref.
see Chisholm and Tessier-Lavigne, 1999; Livesey, 1999). The repellent effect of netrins is
mediated by receptors of the UNC-5 family (for ref. see Chisholm and Tessier-Lavigne,
1999; Livesey, 1999).

Semaphorins are a large family of secreted and membrane bound molecules (Semaphorin
Nomenclature Committee, 1999) that were first identified as repellents for axonal growth
(Mark et al., 1997; Mueller, 1999). Receptors for secreted semaphorins, neuropilins, are
necessary for repulsive guidance cues (Kitsukawa et al., 1997; Giger et al., 2000).
Recently semaphorins (Sema-1a) were also shown to have attractive cues for developing

axons (Wong et al., 1999).

Ephrins and their receptors, the Eph receptor tyrosine kinases, mediate axonal pattering
and pathway selection through contact depended repulsion (Flanagan and Vanderhaeghen,
1998). Eph receptors are named ephA or ephB depending on the class of ligands they bind
(Eph Nomenclature Committee, 1997). Ephrins are divided into two classes: EphinA binds
to EphA and is GPI linked to membranes, while ephrinB is a transmembrane protein that
binds EphB. Further evidence for the role Eph receptors in axon guidance has been
obtained from targeted mutation studies. Embryos lacking the EphB2 receptor function do
not have a part of the anterior commissure (Henkemeyer et al., 1996). Ephrins and Eph
receptors are required for establishing appropriate connections in the retinotectal systems

(Cheng et al, 1995; Drescher et al, 1995; Monschau et al, 1997; Friesen et al., 1998).

2.3.3. Cell adhesion molecules

Pioneer axons may serve as guidance cues for the axons following them. When a large
number of axons follow each other they become grouped together, which is called
fasciculation. Cell adhesion molecules function in the fasciculation process. In Drosophila
Fasculin II (Harrelson and Goodman, 1988), a homologue of the vertebrate NCAM, is
involved in fasciculation (Grenningloh et al., 1991; Lin et al., 1994). L1, NCAM-180, and
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N-cadherin promote neurite outgrowth in vitro (Doherty et al., 1989; Lemmon et al., 1989;
Bixby and Zhang, 1990) and in vivo (Tomasiewicz et al., 1993; Dahme et al., 1997) but
they act on different steps of neurite outgrowth (Takei et al., 1999). L1 functions in neurite
extension and NCAM-180 in growth cone protrusion (Takei et al., 1999). NrCAM and
axonin-1 mediate commisural axons to cross the midline. Reagents that disturb the
interactions of growth cone associated axonin-1 with NrCAM in floor plate result in

pathfinding errors in vivo (Stoeckli and Landmesser, 1995).

2.4. Neuronal degeneration

Neuronal degeneration is a normal phenomenon during nervous system development
(Hutchins and Barger, 1998). Virtually all cell populations in the vertebrate nervous
system undergo massive cell death during the early stages of their development.
Approximately half of all the neurons produced during neurogenesis die (Raff et al.,
1993). Several reasons may cause neuronal degeneration during development. E.g. the
failure of neurons to obtain support from some critical neurotrophic factors (O’Leary and
Cowan, 1984; Pilar et al., 1980) or their inability to make appropriate axonal contacts
(Oppenheim, 1990) might lead to their death. Sex hormones also play a role in neuronal
degeneration during development (Dibner and Black, 1976; Wright and Smolen, 1985).
Developmentally occurring cell death is suggested to occur via apoptosis, characterized by
shrinkage of the cell and its nucleus, condensation of chromatin, and production of
membrane-enclosed particles containing intracellular material known as “apoptotic

bodies” (Kerr et al., 1972; Wyllie et al., 1980; Arends and Wyllie, 1991).

In the adult brain, ischemic brain injury that leads to intracellular overdose of Ca®>" may
lead to neuronal death (Choi, 1988a). Glutamate excitotoxicity is thought to participate in
pathogenesis of the ischemic brain injury (Choi, 1988b; Choi and Rothman, 1990).
Glutamate-induced neuronal death may occur either via apoptosis or necrosis depending
on the mitochondrial function (Ankarcrona et al., 1995). Necrosis is associated with an
extreme energy failure of the mitochondria (Ankarcrona et al., 1995) whereas relatively
intact mitochondrial activity appears to be necessary for the apoptosis to proceed
(Ankarcrona et al., 1995). Thus, necrosis is a passive process characterized by cell and
organelle swelling and lysis of the intracellular contents of the cell into the extracellular

environment. Neurodegenerative diseases, such as Alzheimer’s disease, Huntington’s
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disease, and amyotrophic lateral sclerosis (ALS) all cause neuronal death in the adult
nervous system. In these diseases neuronal death is shown to occur via apoptosis (Smale et
al.,, 1995; Anderson et al., 1996; Zhang et al., 1997 for AD; Dragunow et al., 1995;
Herdreen et al., 1994 for Huntington’s disease; Alexianu et al., 1994; Rothstein et al.,

1994 for ALS).

2.4.1. Alzheimer’s disease

Alzheimer’s disease (AD) is a neurodegenerative disorder that leads to early impairment
of memory and other intellectual functions in humans. The most important
neuropathological signs of Alzheimer’s disease include the accumulation of senile plaques
and neurofibrillary tangles in the brain tissue combined with extensive neuronal loss in
hippocampus (HC), neocortex, and other areas of the brain. Senile plaques are
extracellular deposits with an amyloid core surrounded by degenerating neurons, sprouting
neurites, reactive astrocytes, and activated microglia. The major constituent of the plaques
is the amyloid B protein peptide (AB1-42; Masters et al., 1985; Selkoe et al., 1986).
Additional proteins found in the plaques include a-antichymotrypsin (ACT; Abraham et
al., 1988), apolipoprotein E and J (Namba et al., 1991; Wisniewski and Frangione, 1992;
Choi-Miura et al., 1992), IgG (Eikelenboom and Stam, 1982), several complement
proteins (Kalaria and Perry, 1993), glycosaminiglycans (Snow and Wight, 1989),
fibronectin (Howard and Pilkington, 1990), and laminin-1 (I).

2.4.1.1. Pathophysiology of Alzheimer’s disease
Alzheimer’s disease appears in sporadic and familial forms (familial AD = FAD). Certain
familial forms of AD have been linked to chromosome 21 (St George-Hyslop, et al.,
1987). The amyloid B protein gene maps to this chromosome (Kang et al., 1987, Tanzi et
al., 1987). In all cases of AD there is excessive deposition of AR (Masters et al., 1985;
Selkoe et al., 1986), an insoluble, 42 residue proteolytic processing product of the amyloid
precursor protein (APP). In Alzheimer’s disease APP, normally located on cell membranes
(Kang et al., 1987), is proteolytically cleaved and released into the extracellular space. All
mutants of BAPP that have been linked to AD lead to altered proteolytic processing of this
protein. This altered proteolytic processing favors the production of amyloidogenic and
neurotoxic AP fragment of BAPP (Selkoe, 1995). An eleven amino-acid-long peptide
(amino acids 25-35) derived from the 42-amino-acid amyloid  protein peptide has been

shown to promote neurite outgrowth at low concentrations and to be neurotoxic at high
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concentrations (Whitson et al., 1989; Yankner et al., 1989, 1990a,b; Rober et al., 1991).
This suggests a role for this peptide both in neuronal degeneration and sprouting events
detected in the plaques. Neuronal death induced by amyloid B-peptide in vitro occurs by
an apoptotic way (Loo et al., 1993; Watt ef al., 1994).

In addition to its linkage to chromosome 21 AD is also genetically linked to chromosomes
1, 14, and 19. Mutations of the Presenilin-1 (PS-1) gene in chromosome 14 (Alzheimer’s
Disease Collaborative Group, 1995; Pereztur et al., 1995; Sherrington et al., 1995) and of
the Presenilin-2 (PS-2) gene in chromosome 1 (Levy-Lahad et al., 1995; Rogaev et al.,
1995) are found to cause the early onset familial form of Alzheimer’s disease (FAD).
These PS-1 and PS-2 genes encode for two highly homologous proteins (Levy-Lahad et
al., 1995; Rogaev et al., 1995; Sherrington et al., 1995) that have been localized either
intracellularly within the endoplasmic reticulum and the Golgi complex (Kovacs et al.,
1996) or alternatively in the nuclear membrane and in association with interphase
kinetochores and centrosomes (Li et al., 1997). Recently, PS-1 has also been localized to
the cell surface (Schwarzman, et al., 1999). In addition to the PS-1 gene a gene for a-
antichymotrypsin (ACT) also localizes in chromosome 14 (Billingsley ef al., 1993). ACT
is a protease inhibitor found in the amyloid deposits of AD and in preplaques (Abraham et
al., 1988). ACT has been proposed to accelerate the fibril-formation of AR (Ma et al.,
1994). In some families with the late onset form of AD a linkage to chromosome 19 has
been demonstrated (Pericak-Vance et al 1991). This is relevant for the role of
apolipoprotein E in AD, because apolipoprotein E gene localizes in chromosome 19 (Lin-
Lee et al., 1985). Apolipoprotein E4 is a known risk factor for Alzheimer’s disease
(Corder et al, 1993) although its mechanism of action is presently unknown (Mahley and
Huang, 1999).

In addition to linkage studies several results indicate that defects in energy metabolism
may contribute to the pathogenesis of AD (Blass and Gibson, 1991). In the late-onset AD
mitochondrial cytochrome ¢ oxidase (CO) activity in brains and platelets of the affected
individuals is decreased (Parker et al., 1990; Mutisya et al., 1994; Chagnon et al., 1995).
Recently, mutations of the mitochondrial CO gene that associate with the late-onset AD
have been found to result in overproduction of reactive oxygen species in vitro (Davis et
al., 1997). The free radicals formed may participate in the cleavage of B-amyloid protein

and result in the aggregation of AP peptide in the AD brain tissue.
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2.4.1.2. Extracellular matrix molecules in Alzheimer’s disease

Several extracellular matrix molecules have been localized in the AD brain. Fibronectin is
found in plaques and in crystal-like formations in the gray matter (Howard and Pilkington,
1990). Laminin-1 (I) is localized to the plaques of AD. In cerebral microvessels collagen
IV content is increased in AD (Kalaria and Pax, 1995). At least four different classes of
proteoglycans (PGs) have been detected in the AD brain. These include heparan sulfate
PGs (Snow et al., 1988; 1990; Snow and Wight, 1989,), dermatan sulfate PGs (Snow et
al., 1992), chondroitin sulfate PGs (DeWitt ef al., 1993), and keratan sulfate PGs (Snow et
al., 1996).

APP binds to several ECM proteins, including HSPGs (Narindrasorasak ez al. 1991; Snow
et al., 1994) and laminin-1 (Narindrasorasak et al.1992; Kibbey et al.1993). In fact, APP
may be a laminin receptor that binds specifically to the IKVAV-sequence of the o1-chain
of laminin-1 (Kibbey et al.1993). Biological functions of AP-peptide could be regulated
by its binding to ECM molecules (Koo ef al., 1993). E.g, low concentrations of substrate-
bound AP was found to promote neurite outgrowth when combined with low amounts of

the ECM proteins laminin or fibronectin (Koo et al., 1993).

Recently, ECM molecules, including laminin-1, have been shown to influence the
biogenesis of APP and the generation of amyloidogenic fragments containing amyloid 3-
peptide (Bronfman et al.1996ab, Monning et al. 1995). Perlecan, a HSPG, accelerates A3
fibril formation and stabilizes these fibrils (Castillo et al., 1997). Importantly, laminin-1
has been shown to reduce the fibril formation of AP-peptide in vitro (Bronfman et al.,
1996a, 1996b, 1998; Monji ef al., 1998a, 1998b; Drouet et al., 1999). In the hippocampus
and the frontal cortex of Alzheimer’s disease patients the expression of laminin-1 is
increased compared to normal control brains (I). In AD laminin-1 was identified as large

extracellular punctate deposits in all senile plaques (I).
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2.5. Nervous system regeneration

Regeneration of the adult mammalian peripheral and central nervous system is limited.
Injuries to the central nervous system of adult mammals regenerate mainly in the olfactory
bulb (Graziadei and Monti Graziadei, 1978). The peripheral nervous system is capable of
regeneration, although regeneration of peripheral nerve injuries in adult mammals occurs

slowly and does not necessarily lead into functional recovery.

2.5.1.Regeneration in the peripheral and central nervous systems

Axotomy or crushing of a peripheral nerve leads to Wallerian degeneration, where the
portion of the axon distal to the injury site degenerates. During Wallerian degeneration the
environment in the trauma site is created for regeneration. This includes chromatolysis of
the cell body and removal of the distal end of the axon with myelin-derived debris by
macrophages. If the regeneration is successful the changes in the cell body are reversible
and the proximal stump of the axon grows within the connective tissue remaining in the
distal stump and regenerate. Schwann cells in the distal stump secrete chemotrophic
factors that attract growing axons by mechanisms related to axon growth during

development. (Sunderland, 1991).

Axons of adult CNS do not regenerate, whereas axons of adult PNS regenerate. Lack of
regeneration in the mammalian CNS is thought to be due to the yet-unidentified factors
that prevent regeneration in the CNS but not in the PNS. This has been shown by studies
in which the CNS axons were shown to regenerate if they grow into grafts of the

peripheral nerves (Benfey and Aguayo 1982, Villegas-Perez et al., 1988).

In recent years some of the CNS factors inhibitory for CNS regeneration have been
identified. Cultured CNS oligodendrocytes and CNS myelin were found to inhibit neurite
outgrowth of cultured neurons (Schwab and Caroni, 1988). Some of this inhibition was
mediated by two CNS myelin proteins (absent from PNS myelin), NI-35 and NI-250
(Caroni and Schwab, 1988a). The use of antibodies IN-1 and IN-2 against the NI-35 and
NI-250 molecules did neutralize the inhibitory effects of these antigens (Caroni and
Schwab, 1988b). Transplantion of myeloma cells producing the IN-1 antibody into the
dorsal fronto-parietal cortex of rats 7-10 days before a spinal cord lesion allowed CNS

axons to regenerate (Schnell and Schwab, 1990). Recently identifications of Nogo gene in
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humans and rats, that encodes of an inhibitory myelin protein have been reported (Chen et
al., 2000; Prinjha et al., 2000; GrandePr¢ et al., 2000). The Nogo-A isoform may be the
NI-250 protein recognized by the IN-1 antibody (Chen et al., 2000; Prinjha et al., 2000;
GrandePré et al., 2000). Myelin-associated glycoprotein (MAG; Trapp, 1990), another
myelin protein that inhibits neurite outgrowth (Mukhopadhyay et al., 1994; McKerracher
et al., 1994), is present in myelin sheaths of both CNS and PNS axons (Figlewicz et al.,
1981; Quarles and Trapp, 1984). The inhibitory effect of MAG in the PNS is neutralized
by laminin-1 (David et al., 1995). Recent results indicate that adult CNS myelin does not
always inhibit regeneration but the reactive glial extracellular matrix at the lesion site may
be a major factor associated with the failure of axon regrowth (Davies et al., 1997).
Furthermore, several recent studies indicate that the failure of the axonal regrowth in the
CNS but not in the PNS may be due to the inability of damaged CNS tissue to activate an
appropriate inflammatory response after damage (Lazarov-Spiegler et al., 1996, 1998;
Rabchevsky and Streit, 1997; Rapalino ef al., 1998; Zeev-Brann et al., 1998).

Embryonic CNS tissue regenerates (Kromer et al., 1981; Bjorklund and Stenevi, 1984),
although the mammalian brain has a critical age of development after which regeneration
of the CNS does not occur (Smith et al., 1986). This critical period coincides with
myelination and oligodendrocyte development (Smith et al., 1986; Varga et al., 1995).
Although CNS neurons are generally capable of regeneration (Benfey and Aguayo, 1982)
and environmental factors are the major reason for their failure to regenerate, it has also
been proposed that the intrinsic properties of CNS neurons may suppress regeneration.
Axonal regeneration in the postnatal rat in vitro has been shown to depend on the
maturation of axons (Li ef al., 1995) and injured axons of the adult rat have failed to
regenerate, even in a permissive glial pathway (Davies, et al., 1996). The regenerative
failure of most older axons may be controlled by genetic programming absent in the
developing neurons (Chen et al., 1995, 1997a; Aigner et al., 1995). A candidate gene that
may regulate axon growth is the proto-oncogene bc/-2 (Holm and Isacson, 1999), one of
the primary factors responsible for keeping cells from choosing the apototic pathway. At
the onset of a regenerative failure in vitro the expression of bcl-2 is decreased (Chen et al.,
1997a). Retinal ganglion cells derived from transgenic mice over-expressing the bcl-2

gene retain their ability to grow axons throughout their lifespan (Chen et al., 1997a).
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2.5.2. Attempts to regenerate PNS injuries

A standard method to rejoin transected peripheral nerves is neurorraphy using microscopic
instruments and thin microfilament threads (Sunderland, 1991; Terzis and Smith, 1991).
This methodology requires a specialist and is time consuming. Both gluing (Narakas,
1988) and laser technology (Almqvist, 1988) have been applied, but these methods are not
easier and do not improve regeneration (Vastaméki, 1990). Thus, novel methods to

regenerate injuries of the PNS are needed.

Tubulation of both the proximal and distal nerve ends is believed to aid regeneration.
Tubulation prevents the displacement of nerve stumps, orient axon growth and
vascularization, concentrates growth and trophic factors and protects regenerating tissue
from scar invasion (Madison et al., 1992). Various kinds of tubular prostheses have been
used to bridge nerve gaps. Silicone tubes alone were found to increase regeneration
compared to the untreated controls (Lundborg et al., 1982). The silicone tube facilitates
elongation of the axons across 10-mm gaps in rats (Lundborg et al., 1982). Extended gaps
could also be successfully bridged with silicone tubes filled with collagen-
glycosaminoglycan (GAG; Chamberlain et al., 1998) or artificial nerve grafts composed of
polyamide filaments (Lundborg et al., 1997). These grafts facilitated regeneration across a
15-mm gap in the rat sciatic nerve (Lundborg et al., 1997, Chamberlain et al., 1998).
However, the use of silicone tubes necessitates surgery to suturate the nerve ends into the
silicone tubes. Another more serious disadvantage in the use of silicone tube grafts is the
fact that axons regenerated through the silicone tubes degenerate after one year of
implantation unless the silicone tube is removed. Axonal degeneration may be caused by
the tube material itself or by the constriction of the proximal and distal nerve stumps due
to long-term tubulization (Le Beau et al., 1988). Thus, usage of silicone tubes necessitates
a second surgery to remove the silicone tubes after regeneration has taken place. To avoid
the second surgery biodegradable tubes have been developed. The biodegradable tubes
tested include polylactate tubes (Da Silva er al., 1985; Madison et al., 1987), and
poly(organo)phosphazene tubes (Langone et al.,1995). Collagen or collagen with a GAG
substrate (Collin and Donoff, 1984; Ellis and Yannas, 1996; Chamberlain et al., 1998)
have also been tried in addition to collagen tubes filled with Schwann cells (Kim et al.,
1994). Thin cellulose sheets have shown to be as effective as microsurgical neurorraphy in

reconnecting the transected nerve (III).
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2.5.2.1. Laminin treatment of the PNS injuries

Laminin-1 is a potent neurite outgrowth promoting molecule that is also involved in axon
guidance (Baron van Evercooren et al., 1982; Liesi et al., 1984, 1989; Cohen et al., 1987,
Letourneau et al., 1988). Astrocytes in the CNS of the lower vertebrate (Liesi 1985;
Hopkins et al., 1985) and Schwann cells of the mammalian PNS constitutively express
laminin-1 (Cornbrooks et al., 1983). Astrocytes of the olfactory bulb, the only
regenerating area of the adult mammalian CNS, continuously express laminin-1 (Liesi,
1985b). These observations indicate that expression of laminin-1 correlates with nerve
regeneration. This has suggested many researchers to use laminin-1 grafts in the treatment
of PNS injuries. Laminin has been applied in both silicon and biodegradable tubes as well
as in gels with additional ECM components or in collagen tubes also containing
fibronectin (Madison et al., 1985; Madison et al., 1987; Bailey et al., 1993; Tong et al.,
1994; Labrador et al., 1998). The functional role of laminin-1 in neuronal regeneration is
further emphasized by the fact that the inhibitory effect of a myelin-associated
glycoprotein (MAG) on neurite outgrowth is neutralized by laminin-1 (David et al., 1995).
Microglial grafts that supposedly counteract the mechanisms that inhibit CNS regeneration

induce laminin expression at the injury site (Zak, 1987; Rabchevsky and Streit, 1997).

The Schwann cell laminin differs from the basement membrane form of the protein in that
it lacks the conventional o 1-chain (Davis 1985; Edgar et al., 1988). It is possible that the
a-chain of Schwann cell laminin is either missing or that it is shorter than the a1-chain of
laminin-1 (e.g. 04-chain ). It appears that no 0-chain is necessary for the regeneration of
peripheral nerves. This is evident from a study in which a decapeptide from the neurite
outgrowth domain of the yl-chain was coupled with a type I collagen matrix to form a
filter. This peptide graft supported nerve regeneration as well as suturation of the rat
sciatic nerve (Kauppila et al. 1993). Animals that received laminin grafts to repair their
sciatic nerves showed significantly lower autotomy scores (numbers of self-mutilated
phalanx) compared to the animals with conventional neurorraphy. The thickness of the
graft, however, formed a limitation for its use. If a large number of adjacent nerve
fascicles were to be separately reconstructed, the graft resulted in a compression damage
of the repaired nerves (Kauppila et al. 1993). A thick graft could also impair regeneration

by preventing the diffusion of factors critical for regeneration.
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2.5.3. Attempts to regenerate CNS injuries

The first transplantation studies of nervous tissue were performed as early as in 1863 by
using a portion of the optic nerve to regenerate a dog hypoglossal nerve (For references
see Dellon and Dellon, 1993). Various types of mature CNS neurons have expressed
regenerative capacity of their injured axons when the axons are in contact with peripheral
nerve grafts (David and Aguayo, 1981; Munz et al., 1985; Morrow et al., 1993; Decherchi
and Gauthier, 1996) and a 20% recovery of the dorsal root fibers into the spinal cord was
obtained using living glial cell implants (Kliot, ez al., 1990). Cultured Schwann cells were
found to promote regeneration of CNS neurons when transplanted into the lesioned adult
rat spinal cord (Paino and Bunge, 1991; Li and Raisman, 1994). Recently macrophages,
prestimulated with spontaneously regenerating peripheral nerve tissue, have been shown to
stimulate optic nerve regeneration in the adult rat (Lazarov-Spiegler et al., 1996). These
activated macrophages were also found to enhance the clearance of damaged myelin from
the lesion site (Lazarov-Spiegler et al., 1998). Grafts of cultured microglial cells were also
shown to induce prominent neurite outgrowth of the lesioned spinal cord of adult rats

(Rabchevsky and Streit, 1997).

No therapy for the repair of spinal-cord injuries is presently available (Olson, 1997).
Recently, promising results regarding both the histological and functional recovery of
CNS injuries in rats has been achieved by chronic infusions of IN-1 antibody,
neurotrophin-3 or both (Diener and Bregman, 1994; Schnell et al., 1994; Bregman et al.,
1995). The first evidence for true functional regeneration in the adult mammalian spinal
cord was reported when the cut rat spinal cord was bridged by peripheral nerves in-
between the individual spinal axon tracts and areas of neuronal cell bodies (Cheng et al.,
1996). The bridge was further stabilized by FGF-impregnated fibrin glue (Cheng et al.,
1996).

Neural transplantation of dopaminergic neurons of human embryos into the brains of
Parkinson’s disease patients offers a novel therapeutic tool to treat this neurodegenerative
disease (Lindvall et al, 1994; Kopyov et al., 1996). Human CNS progenitor cells,
maintained in a proliferative state in culture, have been shown to migrate and differentiate
into both neurons and astrocytes following intracerebral grafting in rats (Svendsen et al.,
1997). Although a low number of tyrosinase hydroxylase-positive neurons (approximately

200) were identified in vitro, they could allow functional recovery, because allograft
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studies have shown that only 120 dopamine cells are needed to produce functional
recovery effects (Brundin et al., 1985). Transplanted pig fetal neural cells have also been
grafted in brains of Parkinson’s disease patients (Deacon et al., 1997). The implanted pig
dopaminergic neurons matured and extended neurites into the human host brain (Deacon
et al., 1997). Continuous neurogenesis is shown to occur in the adult mammalian brain,

which may allow future development of methods that favour regeneration in the CNS.
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AIM OF THE STUDY

Aim of this study was

- to investigate the possible involvement of the neurite outgrowth domain of the yl-chain
of laminin-1 in pathophysiology of human neurodegenerative disorders (I)

- to use the weaver mutant mouse as a model system to investigate the possible role of
laminin-1 yl-chain in neuronal migration defects and in neuronal death (II)

- to develop novel tools for neurorraphy (III)

- to use the F9 cells to develop a novel model system for future studies on neuronal

differentiation (IV)
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MATERIALS AND METHODS

I
Production of Antisera to Laminin Peptides

Synthetic peptides derived from the C-terminal part of the mouse y-1-chain (Sasaki and
Yamada, 1987) or al-chain (Tashiro et al, 1989) of laminin-1 were from Multiple
Peptide Systems (La Jolla, CA). Rabbits for anti-1533 a and anti-1533 b were immunized
with a 30 amino acid peptide (p32; I Fig. 1) and rabbits for anti-1543 were immunized
with a 10 amino acid peptide (p20; I Fig. I) conjugated to itself to form a larger polymer
(Linder and Robey, 1987). Rabbits for anti-2091 were immunized with a 22 amino acid
peptide from the a-chain of laminin-1 (PA-22; I Fig. 1.). The peptide columns used to
absorb each antibody were done by coupling the peptides to Sepharose 4B (Pharmacia,

Uppsala, Sweden) according to the instructions of the manufacturers.

Characterization of Antipeptide Antisera

The peptides p20 and p32 were labeled with I using the Bolton-Hunter reagent and the
chloramide T method (Risteli and Risteli, 1987), respectively. The radioimmunotitration
(Timpl and Risteli, 1982) and inhibition (Risteli and Risteli, 1987) assays were carried
out as described previously. Mouse laminin-1 was purified as described earlier (Timple
et al., 1979). Ten micrograms of purified laminin-1 was run in 5% sodium dodecyl
sulfate (SDS) gel electrophoresis under reducing conditions and blotted onto
nitrocellulose filter as described before (Towbin et al., 1979). The transferred proteins
were visualized with 0.2% Ponceau (Sigma, St Luise, MO) in 4% trichloracetic acid and
processed for immunostaining using antipeptide antibodies or antibodies to native
laminin-1 as described earlier (Liesi and Risteli, 1989). 100 ng of native laminin-1 or 10
ng of each synthetic peptide were dot blotted onto a nitrocellulose filter. The filter was

dried and processed as described earlier (Liesi and Risteli, 1989).

Immunostaining of Brain Tissue Sections

Brain tissue samples from Alzheimer’s disease and Down’s syndrome patients and from
normal, age-matched controls were obtained from the National Neurological Research
Bank (VAMC Wadsworth Division, Los Angles, CA). All samples were
neuropathologically verified and were from either the hippocampus or the frontal cortex
of the diseased brains. Brain samples from a total of four different Alzheimer’s disease
patients and five normal, age-matched controls were analyzed. In addition autopsy

material from the hippocampus of a 44-year-old Finnish Down’s syndrome patient was
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obtained. The deep frozen brain tissue was cut into 10 pm cryostat sections and dried for
2 hours at room temperature. The sections were fixed with either 2% paraformaldehyde
or 0.4% p-benzoquinone (Koch-Lights Inc.) in phosphate-buffered saline (PBS) for 15
min at 4°C and processed for immunocytochemistry for laminin or other molecules as
described elsewhere (Liesi and Silver 1988). In short, the sections were dehydrated in
graded series of alcohols ( 50%-70%-96%-100%-xylene) for 5 min and rehydrated
through the same series to PBS. After rinse in PBS for about 30 min the sections were
incubated overnight at 4°C in normal sheep serum (Sigma, St. Louis, MO) and incubated

with the primary antisera for 24 hours at 4°C.

The antiserum against mouse laminin-1 (Liesi and Silver 1988) was used at a dilution of
1:2000 and affinity-purified antibodies against the P1 fragment of human laminin-1
(Risteli and Timpl, 1981) at a concentration of 10 pg/ml. These two antibodies were
applied as an additional control for the specificity of the staining patterns observed.
Antibodies against the synthetic peptides derived from laminin-1 (I) were applied at
1:1000- 1:2000 dilutions. The sections were incubated with the primary antibodies for
24h, briefly washed in PBS, and exposed to sheep antirabbit immunoglobulins coupled to
fluorescein isothiocyanate (FITC; Wellcome, Beckenham, UK). In double staining for a-
antichymotrypsin or amyloid (3 protein the sections were further incubated with normal
rabbit serum followed by incubation with rabbit antibodies to O-antichymotrypsin
(Dakopatts, Copenhagen, Denmark) or rabbit antibodies to the amyloid 3 protein peptide
(Masters et al. 1985). The antibodies were diluted 1:500 and 1:1000, respectively. The
specificity of this sequential immunostaining procedure for two rabbit antibodies has
been confirmed (Liesi et al. 1983b). After a brief wash in PBS, the sections were
mounted in PBS:glyserol (1:1) and viewed with an Olympus BH2 microscope using

epifluorescence and appropriate filter combinations.

Demonstration of mRNA in Brain Tissue

The brain tissue to be analyzed was frozen and ground in liquid nitrogen, solubilized in
guanidine isothiocyanate, and layered on a CsCl cushion (Chirgwin et al., 1979). The
separated RNA was electrophoresed in formaldehyde agarose gels (Goldberg, 1980) and
visualized by ethidium bromide shadowing. After transfer, the RNA was hybridized with
oligolabelled cDNA probes to the al (Sasaki et al.,1988), B1 (Sasaki et al., 1987) and y1
(Sasaki and Yamada, 1987) chains of laminin-1. Shortly, the cDNA probes were
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oligolabelled using Random Primed DNA Labelling Kit (Boehringer Mannheimm) and
purified in G50 column. The filters were incubated in prehybridization solution (50%
deionized formamide, 50mm Hepes, 3XSSC, 5xDenharts, 0.2 mg/ml SS-DNA, 1 mm
EDTA, 0.2% SDS, 0.12%NaCl) for one hour at +37°C. After prehybridization SS-DNA
(6.4 mg) and oligolabelled cDNA probe was added to the prehybridization solution and
filters were further incubated overnight at +37°C. After hybridization filters were washed
in 2xSSC with 0.1% SDS at+37°C 15 min and exposed to X-ray film. A mouse O-actin
c¢DNA probe (Minty et al., 1982) served as a control for the quantity of mRNA loaded.
The same Northern blot lane was hybridized with each of the four probes in a sequential
order. To ensure that washing off of the probe at 60°C in 50% deionized
formamide/0.1xSSC/0.1% SDS for 30 min did not wash off the mRNA, the a-chain
message was detected first, the y-chain message second followed by the B-chain and a-

actin transcripts.

Immunoblotting of Laminin-1 in Brain Tissue

The frozen brain tissue was transferred into a sterile 50 ml Falcon tube containing 10 ml
of lysis buffer (2% Triton-X-100, 0.5 M NaCl, 10 mM Tris HCL, pH 7.4, ImM PMSF).
After homogenization the tissue was dissolved in the lysis buffer and incubated for 30
min at 4°C. The undissolved material was centrifuged at 14 000g for 20 min at 4°C. The
supernatant was transferred to a new tube and dissolved in 5 ml Laemmli sample buffer
with 0.1 M B-mercaptoethanol. The proteins were analyzed via 5% SDS-gel
electrophoresis. After transfer to nitrosellulose (Towbin et al., 1979) the filter was
stained with 0.2% Ponceau S in 4% trichloroacetic acid and processed for
immunoblotting using antibodies to native laminin-1 as described elsewhere (Liesi and

Risteli, 1989).

Polymerase Chain Reaction (PCR) Analysis of the Laminin B Chain mRNA in Brain
Tissue

A specific DNA copy of the laminin $1 chain RNA sequence was synthesized using two
oligonucleotide primers (Bl and B2) derived from the published sequence of human
laminin B1 chain gene (Vuolteenaho et al., 1990). The primer set spanned a region of
287 bp, extending from exon 9 to exon 10. First-strand cDNA synthesis was
accomplished by extension with the downstream primer B2 (5'-

GGATCTCGGATGTCCCTCTCTGG-3") in a 20 pl reaction volume containing 1 g
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total RNA, 30 pmol PCR primer, and reverse transcriptase from AMV (Promega) under
conditions suggested by the supplier. Fifty percent of the heat-treated first-strand cDNA
mixture was then included in 50 pl volume with 1 UM of each of the primers B1 (5'-
CATGTGCAGGCATAACACCAAGG-3") and B2, 0.2mM each of dNTPs, 10 mM Tris-
HCL (pH 8.4), 50 mM KCL, 1.5 mM MgCl,, 0.1mg/ml gelatin, and 1.5 U AmpliTag
DNA polymerase (Perkin-Elmer Cetus, Norwalk, CT). Forty-five cycles of PCR
amplification were performed at 95°C, 55°C and 72°C for 1 min each in a DNA thermal
cycler (Techne PHC-2) according to the method of Saiki ef al. (1985). The double-
stranded PCR products resulting from this amplification were fractionated by
electrophoresis on a 2% agarose gel followed by elution, extraction with equal volumes
of phenol and chloroform, and precipitation with ethanol. One-half of this template was
subjected to DNA sequence analysis using the dideoxy chain termination method of
Sanger (1977) with Sequenase (U.S. Biochemicals). The sequence was determined in
both directions using the PCR primers as sequencing primers. The sequencing reactions
were run on 5% polyacrylamide gels containing 7 M urea and were visualized by

autoradiography (Konica X-ray film).

I

Weaver Mice

Heterozygous (+/wv) mice carrying the weaver mutation were obtained from the Jackson
Laboratories (Bar Harbor, ME) and bred at the colony of the Institute for Basic Research,
New York or at the Department of Anatomy, University of Helsinki. The mice were free
of mycoplasma, MHV, Sendai, and other common mouse pathogens. They were bred on
a B6CBA-A"/A wv genetic background and homozygous weaver (wv/wv) or control

(+/+) mice were used for experiments 7 to 13 days after birth.

Neuronal Cultures

Cultures of the granule neurons were initiated from cerebella of 7- to 10-day-old
homozygous (wv/wv) weaver mice and their normal (+/+) litter mates. The cerebella
were aseptically removed and the cells dissociated using a trypsin/DNase-treament as
described in detail by Trenkner (1991). One hundred thousand cells were plated on
laminin-coated, 22-mm glass coverslips and cultured for 24 hr in serum-free RPMI 1640
culture medium (Gibco, BRL) supplemented with antibiotics and 2 mM glutamine. The

cultures were fixed in 2% paraformaldehyde in PBS for 15 min for quantification and
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immunostaining experiments. In a subset of experiments cultures were grown in the
presence of 100 U/ml of aprotinin (ICN Biomedicals, Costa Mensa, CA) added into the
culture medium lhr after plating. For biochemical studies on proteolytic enzyme
activities the cells were cultured overnight, lysed, collected in Laemmli sample buffer
without 3-mercaptoethanol (LSB-), and run in 3-12 % gradient SDS gels. Quantification
of neurite outgrowth was done in six normal cultures, six weaver cultures, and six weaver
cultures containing aprotin: The numbers of neurons in six representative fields on each
laminin -coated glass coverslip were evaluated using phase-contrast microscopy. The
mean numbers of neurons, and of neurons bearing long neurites (>10 times cell soma),
were evaluated in each case. Approximately 60 neurons were counted per coverslip.
Oneway variant analysis (ANOVA) on the Instat (1.11a) program was used for statistical
analysis. The statistical comparisons between each individual group of neurons were

performed using the Bonferroni’s modified t-test.

Immunocytochemistry

Cerebellar tissues of the normal (+/+) and homozygous (wv/wv) weaver mutant mice
were frozen in powdered dry ice and cut to 10-Um cryostat sections. The sections were
dried for 2 hr at room temperature, lightly fixed in freshly prepared 0.4% p-benzoquinone
(Sigma, St. Louis, MO) in PBS, and processed for immunocytochemistry as described in
detail by Liesi and Silver (1988). Antibodies against laminin-I (Liesi and Silver, 1988)
and its neurite outgrowth domain (anti-1533a and anti-1534 in I) were those used
previously, and their specificities were confirmed (I). The anti-1533a was used for in
vivo studies and the anti-1543 was used for in vitro studies. Rabbit antibodies against
tissue plasminogen activator (tPA) were those used in earlier studies (Tienari et al.,
1991). Antibodies against laminin-1 and its neurite outgrowth domain were applied at
1:2000 and those against tPA at 6 pg/ml for overnight incubations at +4 C. Binding of
primary antibodies was detected using sheep anti-rabbit immunoglobulins coupled to
FITC (Wellcome, Beckenham, UK). In some experiments sections were immunostained
for the glial fibrillary acid protein (GFAP; Bignami and Dahl, 1974a, b) or the L1 antigen
using rabbit polyclonal antibodies (Rathjen and Schachner, 1984). The immunostained
tissues were viewed and photographed using an Olympus BH2 fluorescence microscope

with appropriate filter combinations.
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Zymographic Assays of the Normal and Weaver Mouse Cerebellar Tissues in Vivo and in
Vitro

Cerebellar tissue or granule neurons on a laminin substratum were collected, lysed in
LSB-, and run in 3-12% gradient gels. The gels were washed free of SDS and overlaid
with agarose containing casein and plasminogen as described in detail (Tienari et al.,
1991).Proteolytic enzyme activities of the cell extracts were monitored by incubating
gels with the overlays for 12-24 hr followed by staining of the overlays with amino black
to detect the sites for enzyme activity. Human recombinant urokinase (1.0 U/ml uPA;
Calbiochem, San Diego, CA) and tissue plasminogen activator (5 ng/ml tPA, American
Diagnostica, Greenwich, CT) were used as controls. The specificity of the enzyme
reactions was monitored by control experiments in which 100 pg/ml of the neutralizing
antibodies against either uPA or tPA (Tienari et al. 1991) was added into the agarose
overlays to inhibit the functions of the respective enzymes present in the cell or tissue

extracts.

Electrophysiology

Resting membrane potentials of the normal and weaver neurons on a laminin substratum
were determined using a List EPC-7 patch clamp amplifier. The resting membrane
potentials of the cultured cells were measured immediately after entering the whole cell
patch configuration as described (Hamill er al. 1981). Pipettes were pulled from
borosilicate glass and lightly fire polished. Patch pipettes contained (in mM): 140 CsCl,
10 BAPTA, 2 MgCl,, and 10 HEPES (pH 7.2). Experiments were performed at room
temperature in the RPMI 1640 culture medium.

I

Animals

Male Wistar rats (Hannover strain; Harlan, Netherlands) were used in all experiments.
The rats were 8 months old (380-470 g) and had water and food available ad libitum.
They were housed in groups of six animals with a light cycle 6.00-18.00 h and a relative
humidy of 35-55%. All experiments were apporoved by the Institutional Ethics
Committee of the Institute of Biomedicine, University of Helsinki and by the Provincial

Goverment of Uusimaa, Finland.
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Behavioral Testing of Neuropathic Symptoms

The mechanical withdrawal thresholds of the sciatic nerve areas of the hindpaws of
twelve rats were first determined as described earlier (Mansikka and Pertovaara, 1995).
Briefly, the rat was standing or walking on a metal grid and the right hindpaws were
stimulated with a series of calibrated von Frey monofilaments (Stoelting, USA). The
central pads of the paw served as the stimulus site. The monofilaments were applied to
the foot pad in series of increasing force until the rat withdrew the limb. The lowest force
producing a withdrawal response was considered the threshold. The threshold for each
hindpaw was based on three separate measurements. The tests were performed double-
blind 1 and 2 months after trauma. The statistical comparisons were performed using
Friedman repeated measures of variance on ranks followed by two tailed Mann-Whitney
U-test. P<0.05 was considered significant in all statistical comparisons of this series of

experiments.

Traumatization and Reconstructive Surgery

The rats (6 in each experimental group) were anesthetized with pentobarbital (50 mg/kg,
Orion, Finland) and the right sciatic nerve was exposed under aseptic conditions. The
nerve was transected at mid-thigh and either resutured with two perineural 10-0
monofilament sutures or reconnected by using a moistened lens cleaning paper (Illford,
U.K.) which was wrapped around the stumps of the transected nerves (Kauppila et al.
1993). The anatomical orientation of the nerve stumps was restored by observing the
fascicular and vascular anatomy of the transected nerves. After reconstruction the

wounds were closed in layers with 3-0 silk sutures.

Scoring of Autotomy

Autotomy of the digits was observed once a week during a period of six months.
Autotomy was scored as described earlier (Kauppila and Pertovaara, 1991): Each self-
mutilated phalanx represented one score point. Two-tailed Mann-Whitney U-test was
used for statistical comparisons. The tests for mechanical withdrawal thresholds were
performed one month and two months after nerve resuturation because the regenerated
axons reach the mid-thigh and establish their connections to the periphery during the next

month (Kauppila ef al. 1993).
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Electrophysiologic Testing of Recovery

Six months after surgery the rats were anesthetized with pentobarbital (50 mg/kg) and
reinnervation of the soleus and gastrocnemicus muscles was studied as described earlier
(Kauppila et al. 1993). The sciatic nerve (both operated and unoperated side) was
exposed, transected proximal to the lesion, mounted on a bipolar platinum stimulating
electrodes, and covered with liquid paraffin. The hindlimb was immobilized with needles
and the achilles tendon was cut and connected to a strain gauge (Grass, U.S.A). The
initial load was adjusted to 5 g. The sciatic nerve was stimulated proximal to the trauma
site with square wave pulses of 0-01 or 0.1 ms duration and constant voltage of 15 V
(stimulator Nihon-Kohden, Japan). Five consecutive stimuli were used for testing at both
stimulus durations. The tension resulting in a muscle twitch was recorded after each
stimulus and the differences in tension between the control and operated side were
compared with the one-sided Students t-test. This test was chosen, because we wanted to
detect even the smallest putative differences between the forces of the control (left) side

and the trauma (right) side.

Testing of Anatomic Recovery

To evaluate the degree of anatomical recovery the rats were killed with an overdose of
pentobarbital,and the muscles dissected out and weighed at the end of the
electrophysiological experiments (Kauppila et al. 1993). The statistical analysis was

carried out using the Student two-tailed t-test.

Immunocytochemistry

The nerves were dissected free, frozen on dry ice and cut in 10 pm cryostat sections. The
cryostat sections were fixed in 0.4% p-benzoquinone in PBS for 15 min, washed in PBS,
and dehydrated and rehydrated as described earlier (Liesi and Silver, 1998). Mouse
monoclonal antibodies against the 200 kDa neurofilament protein (RT97, Boehringer,
Germany) were applied at 1:1000 dilutions. After an overnight incubation with the first
antibodies the sections were washed in PBS and exposed to goat anti-mouse
immunoglobulins coupled to TRITC (Cappel, PA, U.S.A) for 1 h. The
immunocytochemistry was viewed and photographed with an Olympus BH-2 microscope

with appropriate filter combinations.
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Cell Cultures

The cells were those used previously (Wartiovaara et al., 1978; Liesi et al., 1983). The
uninduced cells were maintained in plastic Petri dishes (Nunc, Denmark) in 10% fetal
calf serum supplemented with RPMI 1640, antibiotics ,and glutamine. For induction
studies the cells were trypsinized and plated on 13 mm glass coverslips sterilized by
flaming in alcohol. The cells were cultured at a density of 10°/coverslip in 3% fetal calf
serum/RPMI overnight after which RA (Sigma, St.Louis, MO; 107) and dibutyryl cAMP
(Sigma;10™*) were included into the culture medium. The induction was completed by
culturing the cells for 10 days with a media change every three days. The control cultures
were plated at the same density but either maintained in 10% fetal calf serum or in 3%
fetal calf serum without RA/dbcAMP and fixed after 10 days of cultivation. The cells
were fixed in 2% paraformaldehyde in PBS for 15 min and immunostained immediately
afterwards. For the RNA isolation studies the cells were plated at an initial cell density of
100 000 on a 9 c¢m plastic Petri dish either in the presence of 10% fetal calf serum or in

3% fetal calf serum with or without the inducing agents.

Cloning of a F9 Teratocarcinoma Cells

Trypsinized F9 cells were plated at low density (1x10%) on 10cm bacteriological dishes
and picked one by one to the microwells of the tissue culture plastic or to ELISA plates
precoated with laminin (100 pg/pul). The cells were grown in 10 % fetal calf serum
supplemented with RPMI 1640, antibiotics, and glutamine. Cells from the confluent
microwells were transferred into the 3 cm plastic Petri dishes and further expanded onto
the 10 cm plastic Petri dishes. To ensure that each clone originated from a single F9 cell
the cells from 10 cm dishes were sub-cloned again in single cells as described above,
regrown, and stored in 10% DMSO/FCS in liquid nitrogen. The clones were initially
tested for their neuronal properties by plating them on 25 mm glass coverslips in 10%
FCS supplemented with RPMI 1640, antibiotics, and glutamine. After 48 h, the cloned
cells were fixed in methanol and immunostained for the neurofilament triplet proteins
and other neuronal marker proteins. Only the clones derived from the laminin-coated
microwells were chosen for future studies, because they expressed neuronal properties in
a serum free medium (not shown), e.g. the cells had both a neuronal phenotype with
neurite like extensions and expression of neurofilaments and other neuronal markers.
One of such clones, the clone D9L2, was selected for further studies. The D9L2 clone

was plated on 25 mm glass coverslips in a serum free RPMI supplemented with
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antibiotics and glutamine. After 48 hrs the cells were fixed and processed for

immunocytochemistry.

Northern Analysis

Total RNA of the uninduced (grown in 10% serum), control (grown in 3% serum), and
induced F9 cells (grown in 3% serum with RA or with RA and dbcAMP) were isolated
as described (Liesi and Risteli, 1989). 10 pg of each RNA was run in formaldehyde
agarose gels, blotted onto nitrocellulose and hybridized with oligolabeled cDNA probes
for the rat 68 kDa neurofilament protein (Julien et al., 1985), and B-actin (Minty et
al.,1982) as described (Liesi and Risteli, 1989).

Immunocytochemistry for Neurofilament Proteins

Uninduced F9 teratocarcinoma cells grown in 10 % serum, the control cells in 3% serum,
the RA/dbcAMP induced cells in 3% serum, and the D9L2 clone were fixed in 2%
paraformaldehyde in PBS for 15 min, washed in PBS, and permeabilized with cold
(-20°C) methanol for 5 min. The cells were immunostained using either polyclonal
antibodies against neurofilament triplet proteins (Dahl, 1981) or a control antibody
absorbed with neurofilaments (Dahl, 1981) as described earlier (Liesi and Risteli, 1989).
Monoclonal antibodies against the 68 kDa neurofilament protein (Boehringer, Germany)
and monoclonal antibodies against the 200 kDa neurofilament protein (RT97;
Boehringer, Germany) were further applied at Spg/ml concentration. Rabbit anti-NCAM
antibodies (Gegelashvili et al,, 1993) were diluted 1:500 and mouse monoclonal
antibodies against the neuron specific B-tubulin isoform (TUJI; Lee et al., 1990) and
were applied at 1 pg/ml concentration. The immunostained cultures were viewed with an

Olympus BH2 fluorescence microscope with appropriate filter combinations.

RT-PRC Analysis

170 ng of each isolated RNA was used for one tube RT-PCR (Titan™ One Tube RT-
PCR System, Boehringer Mannheim) to detect the 68 kDa neurofilament and the 200
kDa neurofilament gene transcripts. The RT-PCR was carried out for 40 min at 56 °C for
RT-reaction and denaturation at 94 °C for 4 min followed by 35 cycles of denaturation at
93 °C for 1 min, annealing at 58 °C for 2 min, and elongation at 72 °C for 3 min. The
primers used in RT-PCR are listed in IV, Table 1. PCR products of NF 68 kDa were
isolated using a Sephaglas Bandprep kit (Pharmacia Biotech) and sequenced by the

Sanger method.



69

RESULTS

I. LAMININ AND ITS NEURITE OUTGROWTH PROMOTING DOMAIN IN
THE BRAIN IN ALZHEIMER’S DISEASE AND DOWN’S SYNDROME
PATIENTS

1.1. Immunochemical characterization of antibodies against the yl-chain neurite
outgrowth promoting peptides of laminin-1

Three different antibodies against the neurite outgrowth promoting peptide derived from
the yl-chain (Liesi et al., 1989) were produced and their specificities confirmed using dot-
blots and radioimmunoassays. Anti-1543 was specific for a 10 amino acid long peptide
p20 (1543-1553). Anti-1533a and b recognized a 30 amino acid long peptide p32 (1533-
1563) and native and denatured form of laminin-1 Anti-1533b recognize also the p20
peptide. Specificity of anti-1533a for p32 peptide was confirmed by inhibition assays (I,
Fig 2c¢). Inhibition assays for anti-1533b indicated specificity for both peptides.

1.2. Immunocytochemical studies on laminin and its neurite outgrowth peptide in AD
brain

Antibodies against mouse EHS-tumor laminin, mainly recognizing the P1 fragment (Ott et
al.,1982) of laminin-1, detected laminin-1 as punctate extracellular deposits in all senile
plaques in brain samples of aged male Down’s syndrome patients and in brains of
Alzheimer’s disease patients. This was verified by double immunocytochemistry for
laminin-1 and AP or a-chymotrypsin (I, Fig 4A,B). Some glial cells and their processes
were also weakly immunoreactive for laminin-1. In normal control brains capillaries were
the only structures immunoreactive for laminin-1. Antibodies against the human P1
fragment of laminin-1(Risteli and Timpl, 1981) showed a similar distribution, but gave a
stronger positive signal of the glial elements (I, Fig, 4C,D). Absorption of the laminin-1
antibodies by passing them through a laminin-1 column abolished immunoreactivity of the
plaques and glial fibers (I, Fig. 4E,F). Using antibodies against the human laminin-1 P1
fragment laminin-1 immunoreactivity was detected around some capillaries in control

brain tissue as well as in Alzheimer’s disease and Down’s syndrome brains.
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Antibodies against synthetic peptides, derived from the C-terminal domain of the yl-chain
(Sasaki and Yamada, 1987) of mouse laminin-1 (anti-1543 against the decapeptide; anti-
1533a and anti-1533b against the 30-amino acid peptide, I), showed no punctate
immunoreactivity in the plaque regions (I, Fig. 4A,B). Instead the glial cells and their
fibers were immunoreactive for these peptide antibodies in the diseased (I, Fig. 4G), but
not in normal control brains. This immunoreactivity was abolished by preabsorption of the
antibodies through a peptide column. (I, Fig. 4H). An antibody against a neurite outgrowth
domain of the al-chain of laminin-1 stained only the capillary basement membranes.
Peptide antibodies that recognized the 10-amino-acid peptide p20 (anti-1543 and anti
1533b) showed binding of this peptide antigen as fine extracellular punctate deposits in
the affected Down’s syndrome brain tissue (I, Fig. 5D). The deposits of this peptide
antigen were also found in the plaque areas, but there was no specific correlation with the
plaques. Similar fine punctate deposits of the peptide antigen are relevant by these antisera
in all tAlzheimer’s brain tissue investigated. This immunoreactivity was absent in normal
control brains and was abolished in tAlzheimer’s disease brains, if the antibodies were

preabsorbed with the corresponding peptide conjugated to Sepharose.

1.3. Demonstration of laminin-1 mRNA in Alzheimer’s disease brain

Northern analysis showed a differential expression of the mRNAs for the three laminin-1
polypeptide chains in Alzheimer’s disease and normal control brains (I, Fig.6). The
mRNA for the al-chain was expressed in neither case (I, Fig.6). The 8.2 kb yl-chain
transcript of laminin-1 was present both in control and Alzheimer’s disease brains, but the
expression was increased 10-fold in Alzheimer’s disease brain tissue compared to the
normal control brain tissue (I, Fig.6). The 5.6 kb B1-chain transcript was detectable only in
Alzheimer’s disease brain tissue (I, Fig.6). As Northern blots showed no [1-chain
transcripts in control brains, a more sensitive RT-PCR was performed on normal and
Alzheimer’s disease brain tissues. Direct sequencing of the RT-PCR products showed that
the Bl-chain transcripts were present in both Alzheimer’s disease and control brain

tissues.
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1.4. Immunoblotting experiments on Alzheimer’s disease brain tissue

Immunoblots of tissue extract of Alzheimer’s disease brain tissue revealed no expression
of the laminin al-chain, although both B1- and yl-chains were seen using antibodies
against the native laminin-1 molecule (I, Fig.7). In normal control brains the expression of
laminin a1-chain or B1- and yl-chains was not detectable (I, Fig.6). The protein staining
showed equal amounts of samples being loaded in the gels. These experiments together
with Northern analysis indicated that in the Alzheimer’s disease brain tissue the

expression of laminin-1 is elevated compared to the normal brain tissue.

II. INCREASED PROTEOLYTIC ACTIVITY OF THE GRANULE NEURONS
MAY CONTRIBUTE TO NEURONAL DEATH IN THE WEAVER MOUSE
CEREBELLUM

2.1. In vitro studies on neuronal migration and death in the weaver cerebellum

Normal wild-type granule neurons (+/+) extended long neurites on a laminin-1 substratum
(II, Table 1,Fig.1A) and deposited laminin around themselves (II, Fig.1B). The
homozygous weaver (wv/wv) granule cells showed impaired neurite outgrowth on a
laminin-1 substratum (I, Table 1,Fig.1B). The weaver neurons degraded laminin-1 from
their substratum (I, Fig.1D). Polyclonal antibodies against the neurite outgrowth domain
of the yl-chain of laminin-1 showed binding of this antigen along the surfaces of the
weaver granule neurons (II, Fig.2A), whereas wild type granule cells did not bind this
antigen (II, Fig.2B). A serine protease inhibitor, aprotinin, promoted the survival of
weaver granule neurons on a laminin substratum and restored their neurite outgrowth to
the level of normal granule neurons (I, Fig.4). After 12 hours in culture patch clamp
studies indicated that normal neurons had resting membrane potentials (RMPs) of -
61.2mV +/- 2.8, whereas weaver neurons had RMPs of only -37.7 mV +/-3.4 (I, Table 2.)
Aprotinin restored the RMPs of the weaver granule neurons to normal levels (-58.6mV +/-
3.7). In zymographic assays normal granule neurons did not secrete detectable amounts of
urokinase or tissue plasminogen activator in vitro (II, Fig.3A), whereas the weaver granule

cell secreted tissue plasminogen activator but no urokinase (I, Fig.3B).
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2.2. In vivo studies on neuronal migration and death in the weaver cerebellum

In the normal wild-type mouse the external granule cell layer of the cerebellum was L1-
antigen positive, and the white matter of the cerebellum showed some LI-
immunoreactivity (II, Fig.5A). In the weaver mouse the external granule cell layer was
completely devoid of L1-antigen and only moderate L1-immunoreactivity was detected in
the white matter (II, Fig.5B). Immunocytochemistry for GFAP showed that Bergmann
glial fibers were highly immunoreactive for GFAP in the weaver cerebellum (II, Fig.5D),
whereas the glial cells of the normal cerebellum were weakly immunoreactive for this

antigen (II, Fig.5C).

Using a laminin-1 antibody that recognizes native laminin we detected an overall increase
in the production of laminin-1 in the weaver cerebellum. In the normal and weaver
cerebella the Purkinje cell layer showed the highest levels of laminin expression (II,
Fig.6A), but in the weaver cerebellum the Purkinje cell layer and the external granule cell
layer expressed higher amounts of laminin than in the normal cerebellum (II, Fig.6B).
Similarily, an antibody against the yl-chain of laminin-1, anti-1533a, that recognizes the
yl-chain of the native laminin-1 molecule showed an overall increase in the laminin-1 yl1-
chain expression in the weaver cerebellum (II, Fig.7B,D) compared to the normal
cerebellum (II, Fig.7A,C). In the normal cerebellum the yl-chain antigen was detected in
the Purkinje cells. In the external granule cells there was only weak immunoreactivity for
this antigen. In the weaver cerebellum the immunoreactivity for the yl-chain was present
in Purkinje cells, external granule cells, and in the molecular layer, as well as glial fibers.
The weaver granule cells in the external granule cell and molecular layers showed intense

immunoreactivity for the yl-chain antigen (II, Fig.7D).

Immunocytochemical localization of tissue plasminogen activator demonstrated a
coexpression with the yl-chain immunoreactivity (compare II Figs. 7D and H). In the
weaver cerebellum tPA showed an overall increase, but the distribution of tPA in the
weaver cerebellum was similar to that in the normal cerebellum (compare II Figs. 7E,G
and 7F,H). In the normal cerebellum tPA was expressed in fibers extending through the
external granule cell layer, in the molecular layer, and in the Purkinje cell layer. In the
weaver cerebellum the external granule cell, molecular, and Purkinje cell layers showed
the strongest tPA-immunoreactivity. The upper parts of the external granule cell layer

contained tPA immunoreactive glia-like fibers,and diffusely immunostained the immature
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granule cells. An increase in the weaver tPA activity, consistent with the
immunocytochemistry, was also verified by zymographic assays on cerebellar tissues of
normal and weaver mutant mice. At P7 there was no difference in the expression of tPA
between normal and weaver cerebellar tissues. However, at P13 the weaver cerebellum

showed a 10-fold increase in tPA activity compared to the normal cerebellum.

III USE OF PAPER FOR TREAMENT OF A PERIPHERAL NERVE TRAUMA IN
THE RAT

3.1. Immunocytochemical analysis of nerve regeneration

The 200 kDa NF expression was studied in sagittal sections of the regenerating rat sciatic
nerve 6 months after reconstruction. When cellulose was used for regeneration antibodies
against the 200 kDa NF protein showed neurofilament expression in nerve fibres at the
distal tip of the injured nerve (III, Fig. 2C). This 200 kDa NF expression was comparable
to that seen if the sciatic nerve was reconstructed using suturation (III, 2A). In the middle
of the cellulose reconstructed nerve the 200 kDa NF protein was localized as well-
organized nerve bundles (III, Fig. 2D) that appeared similar to the bundles of the sutured
nerve (III, Fig. 2B). Thus, the 200 kDa NF positive nerve fibres had regenerated through
the entire graft. Compared to suturation the cellulose treatment induced a fibrous scar
around the site of injury, whereas no scar developed in-between the transected nerve
stumps. These results indicate that cellulose grafts promoted neurite outgrowth through

the injury zone.

3.2. Twitch tensions of the muscles after treatment

Twitch tensions of the muscles produced by electrical stimulation using either 0.01 ms or
0.1 ms single stimuli were not statistically different between the paper-grafted side and the
uninjured control side (III, Fig. 1). If the nerve repair was performed using ordinary
neurorraphy, the twitch tensions were significantly reduced on the injury side compared to
the uninjured control side (III, Fig.1). Furthermore, the proportional muscle mass, the
muscle mass of the trauma side compared to the control side, was significantly greater
when the reconstruction was performed using paper compared to the ordinary

neurorraphy.



74

3.3. The scores and rate of autotomy

The autotomy scores and the rates of autotomy were compared between paper
reconstruction and neurorraphy. The incidence of autotomy was 50% in both groups. The
latency of onset of autotomy was 2.3+0.8 weeks (mean+S.E.M.) in the neurorraphy group
and 2.7+0.4 weeks in the paper-treated group. The sutured and cellulose-treated groups did
not differ significantly from each other regarding the time within which the maximal
autotomy scores were reached. The mean times required were 2.7x1.1 weeks in the
sutured group and 3.6+1.1 weeks in the cellulose-treated group. The final autotomy scores

were 4.2+2.1 weeks for the suturation group, and 4.0£2.0 weeks for the paper-treated

group.

IV NEUROFILAMENT PROTEINS ARE CONSTITUTIVELY EXPRESSED IN F9
TERATOCARCINOMA CELLS

4.1. Immunocytochemical analysis of induced F9 cells

Polyclonal antibodies against the neurofilament triplet protein were used to demonstrate
that neurofilament proteins were expressed in the uninduced F9 cells grown in 10% fetal
calf serum. Under these culture conditions the cells grew as embryonal bodies in which
the neurofilaments were seen as short filamentous accumulations within the cell explants
(IV, Fig. 2A). When antibodies against the neurofilament triplet proteins were absorbed
with purified neurofilaments the filamentous immunoreactivity of the embryonal bodies
was abolished (IV, Fig. 2C). Monoclonal antibodies against the 68 kDa neurofilament
protein revealed similar filamentous accumulations in the uniduced F9 cell cultures (IV,
Fig.2B). A prolonged (10 days in vitro) cultivation of the F9 cells in 3% serum in the
presence of RA and cAMP induced a neuronal phenotype with extensive neurite
outgrowth and spreading of the F9 cells from the aggregates. Importantly, the F9 cells with
a neuronal phenotype expressed the neurofilament triplet proteins (IV, Fig. 2D). Double
immunocytochemistry for the 200 kDa neurofilament protein confirmed that the neuronal
phenotype in these cultures was accompanied by expression of this mature type
neurofilament protein (IV, Fig. 2E). These NF-positive neuron-like cells grew either as
small clusters on top of the undifferentiated F9 cells, or were attached to the glass surface
and sent out long neurites.(IV, Fig. 2E). In addition to neurofilament proteins (Figs. 2-3)

the uninduced F9 cells also expressed other proteins involved in neuronal maturation, such
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as N-CAM and TUIJI (IV, Fig.3). The control cells (in 3% serum without RA and cAMP)
failed to express immunocytochemically detectable neurofilament proteins (Fig. 3), but

expressed both N-CAM and TUIJI (Fig. 3).

4.2. Northern blot analysis of the induced F9 cells

Northern blot analysis showed that the 3.5 and 2.3 kb transcripts of the 68 kDa
neurofilament protein gene (IV, Fig. I.) were expressed at the same level in the uninduced
F9 cells cultured in 10% fetal calf serum and in the RA/cAMP induced F9 cells cultured in
3% serum (IV, Fig. I.). The uninduced F9 cells in 3% fetal calf serum did not express the
68 kDa neurofilament protein gene transcripts at detectable levels (IV, Fig. 1.). Equal
quantities of mRNA were loaded, as shown by ethidium bromide shadowing of each
loaded mRNA. The mRNA levels were further evaluated by demonstration of [-actin
mRNA levels in each sample using a cDNA probe for human B-actin. Each lane showed
one sharp undegraded actin transcript at approximately 1.7 kb level (IV, Fig. L).
Densitometric scanning of each lane indicated that the levels of actin transcription were

roughly comparable -between all samples.

4.3. RT-PCR analysis

RT-PCR analysis of both the 68 and 200 kDa NF gene transcripts further confirmed that
the NF genes were constitutively expressed in the F9 cells. The 640 bp PCR product of the
200 kDa NF was expressed in uninduced (grown in 10% serum), induced (grown in 3%
serum with RA or RA/dbcAMP) and control (grown in 3% serum) cultures of the F9 cells
(IV, Fig 4). The 419 bp transcript of the 68 NF was also expressed in all conditions
mentioned above. Sequencing of the 419 bp PCR products from all culture conditions
verified that the 68 kDa NF gene products were identical and 98% similar to the cloned
mouse NF 68 kDa gene.

4.4. Cloning of a neuronal F9 cell line

Single cells were picked from heterogeneous populations of F9 cells and grown in 10 %
serum. The clones obtained were tested for their neuronal properties in a 24 hr assay in a
serum free medium. One clone, D9L2, expressed both neurofilament triplet proteins, the
200 kDa neurofilament protein and TUJI (IV, Fig. 3 i-l). Thus, we conclude having

successfully cloned a F9 cell line with neuronal properties.
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DISCUSSION

The results of this thesis indicate that laminin-1 and its neurite outgrowth promoting y1-
chain peptide (Liesi et al, 1989) may be involved in neurodegenerative processes in
Alzheimer’s disease (I) and in the weaver mutant mouse (II). The results also show that
thin grafts of paper may serve as potential carriers of laminin-1 and its neurite outgrowth
promoting yl-chain peptide in attempts to regenerate peripheral nerves (III). Lastly, the
present results indicate that laminin can be successfully used to subclone a novel
neuronal cell line of the F9-teratocarcinoma cells (IV). This cell line may be used as a

simplified model system to study the molecular mechanisms of neuronal differentiation.

I. Laminin and its neurite outgrowth-promoting domain in the brain in Alzheimer’s

disease and Down’s syndrome patients

Even though laminin-1 (i.e. the isoform of laminins that is best characterized for its
function in the nervous tissue) is generally known to promote neurite outgrowth and
regeneration in both the CNS and the PNS (Liesi, 1990), results from this laboratory and
other groups have merged to suggest that laminin-1 and its other isoforms may act in
soluble form (Liesi et al., 1989; Colamarino and Tessier-Lavigne, 1995) and may have a
dual neurotrophic-neurotoxic function (Liesi et al., 1989). An 11 amino acid long peptide
derived from A, the major constituent of the Alzheimer’s plaques (Masters et al., 1985;
Selkoe et al., 1986), was also shown to have a dual neurotrophic/neurotoxic effect on
primary neurons (Yankner et al., 1990b). This similarity led us to investigate whether the
yl-chain of laminin-1 is present in AD and Down’s syndrome brains and could therefore

participate in the neuronal death mechanism in these disorders.

We found that the immunocytochemical distribution of laminin-1 served as a reliable
marker for both senile plaques and pre-plaques in Alzheimer’s disease (I); such a highly
specific expression of laminin-1 in Alzheimer’s disease and Down’s syndrome brains
was a novel finding. Previously, laminin-1 was demonstrated in brains of Alzheimer’s
disease patients in areas surrounding capillaries (Snow et al., 1990) and it was thought to
leak through the capillaries (Perlmutter and Chiu, 1990). However, accumulation of
laminin-1 nearby the capillaries in AD brains may not be essential for pathophysiology of
the disease, because similar accumulations were also detected in normal brain tissue (I).

In contrast, normal control brains showed no expression of the punctate deposits of
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laminin-1 (I), which further supported the view point that deposition of laminin-1 in the
plaque areas could play a role in pathophysiology of Alzheimer’s disease. E.g. the
punctate deposits of laminin-1 in AD plaques could attempt to enhance neurite outgrowth
and be responsible for sprouting events shown to take place in Alzheimer’s brains
(Scheibel and Tomiyasu, 1978; Geddes et al., 1986). This point of view is feasibly based
on the localization of similar punctate deposits of laminin-1 along growing axon tracts
during embryonic brain development (Cohen et al, 1987; Liesi and Silver, 1988;

Letourneau et al., 1988).

Antibodies against the yl-chain neurite outgrowth promoting domain did not localize in
as large punctate deposits in the plaques (I), which might indicate that laminin-1 was
deposited in the plaque regions in such a conformation that the antigenic epitopes
recognized by the peptide antibodies could be hidden or blocked. E.g. HSPGs, also
present in the plaque regions (Snow et al., 1990), could bind to the heparin binding
domains of laminin-1 (Engel, 1991) and prevent the binding of peptide antibodies to the
neurite outgrowth domain of the yl-chain close to the heparin binding site. Alternatively,
the neurite outgrowth domain of the yl-chain might have been degraded in the plaque
areas and could not be recognized by the antibodies. The C-terminal parts of laminin are
known to be more sensitive to proteolysis than other parts of the molecule (Ott et al.,
1982). Both the plaques and the reactive astrocytes of the Alzheimer’s brain are rich in
lysosomal proteinases, such as cathepsins B and D (Cataldo et al, 1990) and these
enzymes could degrade laminin (Heck et al., 1990; Steadman et al., 1993; Buck et al.,
1992; Guinec et al., 1993). If the neurite outgrowth domain of the yl-chain has been
degraded, however, sprouting in the plaques could also be due to the growth factor-like
properties of laminin-1 (Panayotou et al., 1989) or other growth factors in the plaque

regions (Birecree et al., 1988; Stopa et al., 1990; Fenton et al., 1998).

Instead of a localization as large punctate deposits in the plaques, the yl-chain peptide
antibodies recognized fine punctate deposits of the neurite outgrowth domain in AD
brain tissue (I). These fine punctate deposits were detected by antibodies that recognized
a 10 amino acid neurite outgrowth domain of the yl-chain but not native laminin (I). This
result indicates that proteolytic degradation of laminin-1 into smaller peptides,
antigenically similar to the peptides used to produce the yl-chain specific antibodies,

might occur in the Alzheimer’s brain. The fact that glial cells in Alzheimer’s disease and
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in Down’s syndrome brains were strongly immunoreactive for the yl-chain peptide while
native laminin-1 antibodies showed only weak staining of glial cells suggests the glial
laminin was rich in the yl-chain or had antigenic epitopes needed for recognition of the

yl-chain better exposed.

A role for laminin-1 in AD is further suggested by the fact that the IKVAV-peptide from
the al-chain of laminin-1 has been shown to bind APP (Kibbey et al., 1993). This
binding may facilitate the deposition of APP and amyloid in plaques (Kibbey et al.,
1993). We failed to detect mRNA for the 0 1-chain of laminin-1 in AD or control brains
(D). Therefore, if the IKVAV sequence exists in plaques, there must be an
uncharacterized 0-chain or some other neurite outgrowth promoting protein carrying the
IKVAYV sequence. Recent studies have shown that laminin reduces the fibril formation of
amyloid-B-peptide (AB1-42) in vitro (Bronfman et al., 1996a, 1996b, 1998; Monji et al.,
1998a, 1998b; Drouet ef al., 1999) and modulates the biogenesis of APP (Monning et al.,
1995; Coulson et al., 1997). These results indicate that laminin-1 and its yl-chain may
have a direct interaction with APP and that this interaction may be have importance for

the pathophysiology of Alzheimer’s disease.

The induction of both laminin-1 and APP occurs in reactive astrocytes of the injured
adult rodent brain (Liesi et al., 1984; Siman et al, 1989). Here we report an
approximately 10-fold increase in laminin-1 yl-chain expression in AD brains compared
to control brains (I). The increased expression of laminin-1 and its yl1-chain may be due
to the response of the diseased brain to the tissue injury occuring in AD brains. Factors
involved in the gene regulation for the expression of laminin-1 are largely unknown.
However, expression of the yl-chain of laminin-1 is known to be induced by interleukin-
1 beta (Richardson et al., 1995) or Sp-1 transcription factors (Lietard et al., 1997). Both
interleukin-1 beta and Sp-1 are induced by trauma (Giulian and Lachman, 1985; Pearson
et al., 1999; Feng et al., 1999). The trauma-induced over-expression of both APP and
laminin-1 together with increased proteolysis could release AP and laminin-1 ylI-chain
peptides in the AD brain tissue. As the yl-chain peptide of laminin-1 is neurotoxic at
high concentrations in vitro (Liesi et al., 1989), its binding and accumulation in the AD
brain tissue may produce a synergistic neurotoxic effect together with A peptide. This
neurotoxity can be further enhanced by the release of excitatory neurotransmitters (Koh

et al., 1990) and growth factors (Yankner et al., 1990a,b; Kowall ef al., 1991). Thus, we
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hypothesize that laminin-1 synthesis is initially induced as tissue response to trauma with
no direct link to the disease. However, laminin-1 may be involved in neuronal death in
both AD and Down’s syndrome via its interaction with APP (Narindrasorasak et al.,
1992) and its toxic peptides as well as via accumulation of the neurotoxic yl-chain

peptides in plaques and the brain tissue.

II Increased proteolytic activity of the granule neurons may contribute to neuronal

death in the weaver mouse cerebellum

Increased expression of the yl-chain neurite outgrowth peptide (Liesi ef al., 1989) in AD
brain tissue (I) suggested that this peptide may be involved in neuronal death. We used
the weaver mutant mouse, an animal model of neuronal degeneration, to study further the
possible involvement of the y1-chain peptide in neuronal death. We found that expression
of laminin-1, and its yl-chain neurite outgrowth domain were elevated in the cerebellum
of the weaver mutant mouse (II). Expression of tissue plasminogen activator (tPA) in the
weaver cerebellum was also high compared to the normal cerebellum (II). As tPA co-
localized with laminin-1 in the weaver cerebellum (II), increased expression of both tPA
and laminin-1 and its yl-chain may result in increased proteolytic cleavage of laminin-1
and its yl-chain. Thus, toxic amounts of peptides derived from the yl-chain neurite
outgrowth domain might accumulate in the weaver cerebellum and result in massive
neuronal death. This point of view is supported by the fact that weaver granule neurons
degrade their laminin-1 substratum (II) and bind increased amounts of the neurite
outgrowth domain of the yl-chain (II). Importantly, weaver neurons can be rescued by a
serine protease inhibitor aprotinin (II) or by antibodies against the yl-chain peptide (Liesi
and Wright, 1996). As both the RMPs and the neurite outgrowth potential of weaver
granule neurons can be rescued by aprotinin (II), increased proteolysis may be one of the

primary defects in the weaver mouse cerebellum.

The role of tPA in neuronal degeneration and degradation of laminin has been
demonstrated by the fact that mice deficient for tPA or plasminogen are resistant to
neuronal degeneration (Tsirka et al., 1997), and that degradation of laminin by tPA
proteolysis is shown to preceed neuronal death after an injection of excitotoxin (Chen

and Strickland, 1997; Nagai, et al., 1999). Recent results by Mecenas et al. (1997)
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contradict these data and show that neurons in tPA -/- homozygous weaver mice are not
rescued. It is not currently known why Mecenas et al. failed to rescue the weaver
neurons, but it is possible that the complete lack of tPA in the wv/wv-tPA-/tPA- mice
opposed to a reduction of tPA-proteolysis by aprotinin (II) is generally harmful to
neurons, especially since tPA induced proteolysis is know to be essential for neuronal

migration (Kalderon, 1982; Seeds et al., 1990).

In addition to the abnormal laminin-1 expression and proteolytic activity of the weaver
neurons (II), additional molecular mechanisms may impair neuronal migration in the
weaver mouse cerebellum. A point mutation of the GIRK2 potassium channel gene has
been proposed to be responsible for the weaver phenotype (Patil et al., 1995; Slesinger et
al., 1996). However, the importance of the GIRK2 gene as a weaver gene is fading
because electrophysiological experiments have failed to detect functional GIRK2
channels in the cultured weaver granule neurons (Mjaatved et al., 1995; Surmeier et al.,
1996). Furthermore, the GIRK2 knockout mice have normal cerebella (Signorini et al.,
1997), which indicates that the GIRK2 channel is not essential for early postnatal
development of the cerebellum and cannot therefore be the weaver gene. Rescue of the
weaver granule neurons from death by verapamil a L-type calcium channel blocker (Liesi
and Wright, 1996), or other means that reduce the levels of intracytoplasmic calcium
(Liesi et al., 1997) strongly suggest that the weaver gene action is mediated by calcium-
dependent mechanisms. The Weaver granule neurons fail to express functional N-
methyl-D-aspartate (NMDA) receptors (Liesi and Wright, 1996), which may be due to
the fact that the €2 subunit is absent in the weaver cerebellum (Liesi ef al., 1999). The €2
subunit is induced in the granule neurons after rescue with verapamil (Liesi and Wright,
1996; Liesi et al., 1999), which suggests that the down regulation of NMDA receptors
may be a protective measure to reduce calcium entry into weaver granule neurons via
functional NMDA-receptors. As NMDA receptors have been shown to play a role in
neuronal migration (Komuro and Rakic, 1992, 1993), the lack of NMDA-receptor
function may result in the expression of the weaver phenotype (Liesi and Wright, 1996;
Liesi et al., 1999). The role of NMDA receptors in the expression of the weaver
phenotype is further emphasized by results that blocking of the NMDA receptor function
in the homozygous weaver mice by eliminating the {1-subunit rescues the weaver

granule neurons from death (Jensen et al., 1999).
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I1I Use of cellulose for treatment of a peripheral nerve trauma in the rat

Laminin-1 and its yl-chain domain support axon growth of CNS neurons (Matsuzawa et
al., 1996; 1997). Laminin-1 is known to associate with the regenerating CNS (Liesi
1985b) and peripheral nerves have been shown to grow along the laminin-rich basement
membranes (Ide ef al., 1983). Thus, laminin-1 grafts have been used by several
laboratories in attempts to repair peripheral nerve injuries (Madison et al., 1985; 1987,
Bailey et al., 1993; Tong et al., 1994; Labrador et al., 1998 Kauppila et al., 1993).
Laminin-1 or its yl-chain neurite outgrowth promoting peptide (Liesi et al., 1989)
coupled with a type-I-collagen have been used to support neuronal regeneration in vivo
(Kauppila et al., 1993). These grafts supported regeneration comparable to that achieved
by suturation (Kauppila et al., 1993). The main limitation for the use of such laminin-1
grafts was the thickness, which made these grafts difficult to handle and caused
compression of damaged nerves. As laminin-1 and its y1-chain neurite outgrowth peptide
were found effective in peripheral nerve regeneration (Kauppila et al., 1993), the

development of more suitable graft materials is needed.

We therefore tested thin cellulose grafts for their ability to regenerate peripheral nerves.
We applied cellulose because it has been successfully used for the treatment of burns as
well as in otolaryngology in humans (Palva, 1982; Hazarika, 1985) and could be
immediately applied to human nerve surgery. The use of cellulose grafts was more
feasible than using collagen-I grafts, since proteins could be covalently coupled to
cellulose. Thin sheets of cellulose were used to reconstruct severed peripheral nerves in
rats (IIT). Cellulose was sticky and allowed good positioning of the severed nerves, but
provoked a stronger foreign body reaction inflammation than resuturation (III). When
cellulose grafts were used in restorative surgery the twitch-induced forces of the muscles
between the operated and control sides were identical (III), which was an unexpected
result. In sutured animals the twitch-induced forces of muscles decreased as compared to
control side. The latter result is consistent with earlier studies by Brunetti et al. (1985)
and Kauppila ef al. (1993). Also macroanatomical measurements of the muscle mass
favor the hypothesis that cellulose around the trauma site may favor neuroregeneration.
In fact, the proportional muscle mass had a tendency to increase when cellulose grafting
was used for reconstruction. Increase in the proportional muscle mass is considered as a

measure of nerve regeneration (Kauppila ez al., 1993; Kauppila, 1994; Greensmith et al.,
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1995). Thus, our results indicate that nerve regeneration improved using cellulose grafts

compared to conventional suturation.

Thin cellulose grafts were found to induce scar formation around the trauma site (II),
whereas scar formation was minimal if reconstruction was made by suturation.
Inflammation near the trauma site is known to promote regeneration of both rat dorsal
root and sciatic nerve injuries (Lu and Ricahardson, 1991; Dahlin, 1992), which suggests
that scar-formation may be one of the factors in cellulose grafting that supports

regeneration.

Cellulose grafting was as efficient as suturation in preventing dyesthesias induced by
self-mutilation. The low autotomy scores of both cellulose grafting and suturation
indicated that cellulose grafting effectively supported sensory regeneration of the
denervated paws. This could be concluded, since the high incidence of autotomy
correlates with poor recovery (Kauppila, 1994) and autotomy is known to disappear
when regenerating axons form their connections (Wall ez al., 1979; Kauppila et al., 1993;

DeLeo et al., 1994; Kauppila, 1994).

The present results suggest that cellulose grafts may be used to repair peripheral nerves.
However, additional research will be required before this technique will be clinically
applicable. This is due to the fact that rats have only few fascicles in their sciatic nerves
and therefore the repair of rat nerves differs from a normal clinical situation in which
several adjacent facicles are damaged and need to be rejoined. Scar formation that occurs
in cellulose grafting may result in intraneural fibrosis in humans and hamper

regeneration, although regeneration of rat neurons occurred successfully.

IV Neurofilament proteins are constitutively expressed in F9 teratocarcinoma cells

Neuronal differentiation has been shown to be under a negative control, i.e. cells will
become neurons if they do not receive inductive signals to become other cell types
(Hemmati-Brivanlou and Melton, 1997). Bone morphogenetic protein (BMP) is one of
the recently identified factors involved in initial neuronal induction (Wilson and
Hemmati-Brivanlou, 1995). Binding of neuronal inducers (such as noggin, follistatin, and

chordin) to BMP inactivates BMP and results in expression of several transcription
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factors that promote the neuronal lineage (Sasai, 1998). Until now, neurogenesis of
mammals has been thought to occur during the embryonic and early postnatal period.
However, recent research has shown that the adult mammalian brain has neural stem
cells that can give rise to both neurons and glial cells (Reynolds and Weiss, 1992, 1996;
Lois and Alvarez-Buylla, 1993; Morshead et al., 1994; Palmer et al., 1997; Johansson et
al.,1999; Chiasson et al., 1999). These adult stem cells are very similar to those present
in the embryonic brain and similar mechanisms are therefore thought to induce their
differentiation into various cell types (Johe et al., 1996; Palmer et al., 1997; Johansson et

al.,1999; Chiasson et al., 1999).

Apart from normal stem cells neuronal differentiation has been studied extensively using
teratocarcinoma cell lines (Pleiffer et al., 1981, McBurney et al., 1982, Levine and Flynn
1986, Kubo 1989; Kuff and Fewell, 1980, Liesi et al, 1983). As an approach to the
molecular mechanisms of neuronal differentiation we used F9 teratocarcinoma cells as a
model system (IV). We chose this cell line, because Liesi et al. (1983) have previously
shown that the F9 cells can choose a neuronal lineage when exposed to RA/dbcAMP
under serum deprivation. Our studies confirmed these results and also showed that the
uninduced F9 cells, grown in 10 % serum, expressed both the 68 kDa neurofilament gene
transcripts and protein without having a neuronal phenotype (IV). Even without the
neuronal phenotype these cells expressed additional neuronal markers, such as the
neuron specific tubulin I isoform (TUJI) and N-CAM. RT-PCR studies showed that
both the 68 kDa and the 200 kDa neurofilament (NF) gene transcripts were constitutively
expressed by F9 cells (IV). The present results confirm and expand the earlier results by
Liesi et al. (1983). We show here that RA/dbcAMP treatment of the F9 cells is not
required for their expression of neurofilament genes and proteins (IV). However, the
expression of a neuronal phenotype by the F9 cells appeared to depend on serum

deprivation and RA/dbcAMP stimulation (IV).

Even though the neuronal differential potential of F9 cells has been published by several
laboratories, contradictory results have also appeared. The F9 cells have also been found
not to express NF-proteins (Tienari ef al., 1987). This controversy is not presently
understood, but it is possible that laboratories that failed to induce/demonstrate

neurofilament expression of the F9 cells may have used a cell line in which the non-
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neuronal subpopulation of F9 cells might have been selected over the neuronally

differentiating one.

This view is feasible, because we verified that only a subpopulation of F9 cells
developed into neuron-like cells under serum deprivation and exposure to RA/dbcAMP
(IV). Thus, the F9 cells could not be used in biochemical or molecular studies on
neuronal differentiation. In order to solve this problem we subcloned the F9 cells on a
laminin-1 substratum by using a single parent cell isolation technique. Using this
technique we obtained a homogenous, neuronally differentiating D9L2 cell line that 1)
expressed the 200 kDa NF protein and 2) had a neuronal phenotype on the regular tissue
culture plastic in a serum free medium without RA and dbcAMP. Laminin-1 was chosen
as an initial growth substratum of the isolated cells, because earlier studies indicate that
laminin-1 promotes neuronal of several types of neurons, such as early neuroepithelial
cells (Heaton and Swanson, 1988; Frade et al., 1996), embryonic hippocampal neurons
(Lein et al., 1992), sympathetic neurons (Chu and Tolkovsky, 1994), and enteric neurons
(Chalazonitis et al, 1997). Our results indicate that laminin-1 indeed is a favored
substratum for the cloning of a neuronal D9L2 cell line. This cell line is currently being

used in our laboratory to study the molecular mechanisms of neuronal differentiation.
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SUMMARY AND CONCLUSIONS

In this Thesis, I have studied the potential role of laminin-1 and its yl-chain neurite
outgrowth domain in Alzheimer’s disease and in the weaver mutant mouse model. Based
on previous results on the role of laminin-1 I have tested cellulose as a suitable graft
material in the repair of neuronal injuries and used laminin-1 to develop a neuronal F9

cell line for future studies on neuronal differentiation.

We wanted to study the expression of laminin-1 and its yl-chain peptide in Alzheimer’s
disease and Down’s syndrome brains, because both the neurite outgrowth domain of the
yl-chain of laminin-1 and the AP-peptide were shown to have a dual concentration-
dependent neurotrophic/neurotoxic effect. We found that laminin-1 and the neurite
outgrowth promoting domain of its yl-chain accumulate in Alzheimer’s disease and
Down’s syndrome brains, but not in normal control brains. The punctate deposits of
laminin localize in the Alzheimer’s plaques and antibodies against the neurite outgrowth
promoting domain of the yl-chain detect both the extracellular yl-chain deposits and
glial cells in the diseased brains, but not in healthy control brains. These results suggest
that deposition of laminin-1 in plaques, and its yl-chain in the astrocytes and Alzheimer
brain tissue may either promote sprouting of the affected neurons or contribute to the

neurotoxic mechanisms that cause neuronal death in Alzheimer’s disease.

Our results on the increased expression of laminin-1 and its yl-chain neurite outgrowth
domain in Alzheimer’s disease and Down syndrome brains implied that laminin and its
yl-chain may be involved in neuronal death mechanisms. To study this in detail we used
weaver mutant mice as an experimental model system for neuronal migration defects and
neuronal degeneration. We found that the weaver mouse cerebellum shows an increased
expression of laminin-1, and its yl-chain. Increased proteolytic activity in the weaver
cerebellum may lead to degradation of laminin-1, and accumulation of the neurite
outgrowth domain on the surfaces of the weaver granule cells. This may result in

accumulation of neurotoxic peptides that provoke the death of weaver neurons.

The role of laminin-1 in peripheral nerve regeneration has been verified in an earlier
study, but suitable graft materials have not yet been found for the coupling of laminin-1

and its biologically active peptides. Therefore, we tested cellulose as a graft material to
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be coupled with laminin or synthetic peptides with a neurite outgrowth promoting
activity. We found that cellulose grafts induced more fibrous scarring around the
transection site compared to the microsurgical neurorraphy. However, this scarring did
not impair functional recovery or cause signs of neuropathic pain. Thus, our results
indicate that cellulose may be a potentially useful material in the repair of peripheral

nerves.

Laminin-1 is known to promote neuronal differentiation. Therefore, we used laminin-1 to
subclone a novel neuronal cell line of the F9 teratocarcinoma cells. This was necessary,
because we found that only a subpopulation of F9 cells expressed neuronal markers and
could be differentiated into cells with a neuronal phenotype. In the course of our study,
we found that the undifferentiated F9 cells constitutively expressed both the 68 kDa and
200 kDa neurofilament transcripts and proteins as well as other neuronal marker proteins.
These results indicate that RA and dbcAMP are not necessary for neurofilament gene
expression in F9 cells. Instead, they may be required for the expression of a neuronal

phenotype by the F9 cells.
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